
    

 
Figure 1.  Dependence of GRAPPA and 
SV-GRAPPA reconstruction coefficient 
magnitude on x coordinate. 
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Introduction: GRAPPA [1], a widely used technique for parallel MRI (P-MRI), has serious limitations for image reconstruction from highly undersampled data. 
Recently, two algorithms, GARSE [2] and MCMLI [3], have been proposed to resolve this GRAPPA limitation by exploiting all available data dimensions to find 
reconstruction coefficients that allow more reliable reconstruction for high reduction factors. However, inclusion of additional data dimensions in reconstruction 
substantially increases the number of reconstruction coefficients resulting in low computational efficiency of these new algorithms. Furthermore, image reconstruction 
speed for the new algorithms is also reduced because the Fourier transform in the readout direction cannot be applied immediately after each readout acquisition. In this 
abstract, a novel algorithm is presented that achieves equivalent image quality from highly undersampled data as the multi-dimensional auto-calibrating techniques but 
has computational efficiency comparable to that of GRAPPA. 
Theory and Methods: Image si(r) acquired by the i–th coil element can be described by si(r)=ci(r)f(r), where f(r) is the imaged object, ci(r) is the i-th coil sensitivity 
(i=1:Nc, Nc – the number of coils). In k-space, the equation is given by Si(k)=Ci(k) ⊗ F(k), where the symbol ⊗ denotes convolution. For simplicity of presentation, the 
proposed reconstruction method will be described for the 2D imaging case (si(r)=si(x,y)) with data undersampling along the phase encoding dimension ky. 
Generalization to 3D imaging and undersampling in both phase-encoding dimensions is straightforward. 
    In 2D P-MRI with data acquisition on a regular Cartesian grid, only a fraction of ky views required by the Nyquest criterion is acquired. For each acquired ky view, all 
required kx locations are sampled. Fourier transform along kx can be used to reconstruct an intermediate image estimate:  Sx,i(ky)=Cx,i(ky) ⊗ Fx(ky), where index x=1:Nx, 
Nx is the number of pixels spanning the image field-of-view (FOV) in the x (readout) direction. Thus, the 2D P-MRI reconstruction problem can be subdivided into Nx 
1D reconstruction problems. The last equation can be expressed in matrix form Sx,i=Cx,iFx for each individual coil dataset. Combining all coil equations, the matrix 
equation describing P-MRI with k-space sampling on a Cartesian grid is given by Sx=CxFx with x=1:Nx. 
     In the case of k-space undersampling, the vector Sx and matrix Cx can be presented as  ˆ
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− − −′ ′ ′= C C Ψ C C ΨA and Ψ is a matrix describing the coupling and noise correlation between the 
receiver coils. The first equation describes image reconstruction from the undersampled P-MRI data when coil sensitivities are known [4,5]. The second equation shows 
that missing data in the individual coil datasets can be found by linearly combining the acquired data:                       

1:

ˆ( , ) ( , , , ) ( , )
i y y j y

yj Nc k

S x k a i j x k S x k
′=

′ ′= ∑ ∑                      [1] 

where yk ′  ( ˆ
yk ) denote the acquired (missing) ky views. The coil sensitivities ci(r), which vary slowly in image space, can be described by a small number of Fourier 
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where ˆ( )ykΩ  is a neighborhood of ˆ
yk . The GRAPPA algorithm [1] can be presented in the analogous form:         
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    The main distinction between this new algorithm, Spatially Variant (SV)-GRAPPA, and GRAPPA is how the reconstruction coefficients depend on the x coordinate. 
In SV-GRAPPA, the reconstruction coefficients ( , , , )

y
a i j x k ′ are spatially varying and change according to local coil sensitivity characteristics. Whereas GRAPPA 

reconstruction coefficients ( , , )
y

b i j k ′  are spatially invariant and based on global coil sensitivities characteristics. Thus, GRAPPA is only optimal when coil sensitivities 
are independent of the x coordinate. This assumption is not true for typical receiver coils used in MRI.  
    In case of P-MRI with sampling on the regular 2D Cartesian grid, coefficients ( , , , )

y
a i j x k ′ can be evaluated from auto-calibrating k-space lines using the fitting 

procedure proposed for GRAPPA [1]. To get relevant reconstruction coefficients, the fitting should be highly over-determined because auto-calibrating data are 
contaminated by noise. In SV-GRAPPA, the number of auto-calibrating data for each x position is small. Therefore, the fitting can be ill determined for SV-GRAPPA. 
To resolve this problem, two approaches were considered. Both of them are based on the fact that coil sensitivities can be described by slowly varying functions in the 
image domain, and, therefore, ( , , , )

y
a i j x k ′  should be also slowly varying relatively to the x coordinate. In the first approach, auto-calibrating data are divided in 

overlapping blocks along the x direction, a set of reconstruction coefficients is calculated for each block, and the sets are interpolated to find ( , , , )
y

a i j x k ′  for all x 

values. In the second approach, ( , , , )
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where 2 / Nxγ π= , m=-(Nm-1)/2, -(Nm-3)/2, ..., (Nm-1)/2 , and Nm is an odd integer. At first, the ( , , , )
y

c i j m k ′ are estimated 
using the fitting procedure with all available auto-calibrating data (highly over-determined problem). Then, the 
coefficients ( , , , )

y
a i j x k ′ are calculated according to Eq. [4].  

   SV-GRAPPA needs the same number of computational operations as conventional GRAPPA to reconstruct the missing k-
space lines when the number of the reconstruction coefficients is the same for both techniques and the coefficients are known. 
The number of computations required for SV-GRAPPA coefficients estimation strongly depends on the number of x blocks and 
their width for the first approach and the factor Nm for the second approach. It is typically higher than the number of 
computations needed for GRAPPA coefficients estimation. 
Results: To test the proposed technique, MRI studies were performed on a Siemens Trio 3 Tesla system using the eight-channel 
head coil. Typical dependence of SV-GRAPPA reconstruction coefficient on x coordinate is shown in Fig. 1. For comparison, 
the corresponding GRAPPA coefficient value is plotted. It is obvious that SV-GRAPPA coefficient more accurately reflects a 
complexity of coil sensitivity maps than GRAPPA coefficient. This allows SV-GRAPPA to achieve significantly better image 
quality and lower RMS errors than GRAPPA, especially for high reduction factors (Fig. 2). 
Conclusion: A novel auto-calibrating technique for P-MRI has been developed. SV-GRAPPA, like multi-dimensional auto-

calibrating techniques, is based on the fact that sensitivities of receiver coils vary 
in all spatial dimensions. Therefore, the reconstruction coefficients should also 
vary spatially and be adjusted according to local coil sensitivity characteristics to 
get optimal image reconstruction from highly reduced P-MRI data. 
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Figure. 2. Phantom images reconstructed by GRAPPA (a,c) and SV-GRAPPA (b,d).
Undersampling rate, R, for (a,b) is equal 3, for (c,d) R=4. Numerical values given below the
images indicate the corresponding RMS errors. SV-GRAPPA reconstruction coefficients
were estimated using the first approach with 12 blocks. 

Proc. Intl. Soc. Mag. Reson. Med. 14 (2006) 285


