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Introduction  In clinical quantitative dynamic contrast enhanced MRI (DCE-MRI), it is difficult to verify the accuracy of estimates of kinetic model parameters such as 
Ktrans, ve and vp, as we do not know the ‘true’ parameter values (ground truth).  The problem is exacerbated when we apply motion-correction algorithms in addition to 
model fitting, as we need to validate both the image registration procedure and the fitting process.  Therefore, as an initial step towards a complete validation 
framework, we have developed a synthetic DCE-MRI data set (software phantom) that incorporates the effects of contrast agent accumulation and washout, translational 
motion, and noise.  Using this phantom and tracer kinetic modelling1, we show that a recently introduced kinetic model-driven registration algorithm2 is able to recover 
accurate parameter values from motion-corrupted synthetic data. 

Synthetic Data  The synthetic data comprise a collection of nested cuboids of “pseudo-tissues”, 
to which we have assigned characteristic values for the parameters of an extended Kety tracer 
kinetic model (including a vp term)3, as well as initial values for pseudo-tissue T1 and S0.  We 
used the model along with a high temporal resolution population-averaged arterial input 
function4 to generate a time series of 100 simulated spoiled gradient echo (Fast Field Echo) 
image volumes with a TR of 4 ms, 30o nominal flip angle, a temporal resolution of 4.03 s and a 
matrix of 128 x 128 x 25 voxels of size 2.5 x 2.5 x 4.0 mm3.  The image and acquisition 
parameters were chosen to approximate those of a typical DCE-MRI acquisition in our centre.  
We added motion and noise corruption by applying a sinusoidal translation with a random 
component only to the “tumour” pseudo-tissues and zero-mean Gaussian noise with a signal-to-
noise ratio (SNR) of 10.  Fig. 1 shows three example time points from a synthetic dynamic 
series, showing synthetic “muscle” (background), “fat” (mid-size square), “artery” (small 
square), and “tumour” (arrows) with an enhancing rim and a non-enhancing core. 

Methods  We obtained 3D maps of Ktrans, ve and vp from the static and motion-corrupted 
synthetic data by fitting the extended Kety model in a volume of interest (VOI) encompassing 
the tumour, using the locally-written MaDyM package.  For the motion-corrupted sets, we then 
performed kinetic model-driven registration and repeated the model fitting.   

Results  For the static synthetic data, the 3D maps took the expected form of pseudo-tissue 
regions with uniform intensities corresponding to the input parameter values, corrupted only by 
noise: see e.g. the Ktrans map of Fig. 2(a).  Fig. 3 compares the simulation input values with the 
median parameter estimates from pure pseudo-tissue VOIs defined on the static synthetic data 
(labelled “Static”) – the estimates agree to within the noise level except for the core ve, which 
was underestimated due to the slow enhancement and the low signal level. 
   Adding motion to the synthetic data corrupted the parameter estimates, resulting in the Ktrans 
maps of Fig. 2(b) and the median parameter estimates labelled “Pre-reg” in Fig. 3.  As expected, 
most of the distortion in the Ktrans maps occurred at the borders between the pseudo-tissues, 
because in these voxels motion mixes the contributions of the pseudo-tissues to the time series 
data.  As the through-plane motion was of greater magnitude (to simulate the greater cranio-
caudal motion expected with breathing), the sagittal and coronal views show greater through-
plane corruption (arrowed on Fig. 2(b)). 
   Model-driven registration restored the median parameter estimates to approximately those 
obtained from the static data (Fig. 3 – labelled “Post-reg”) and significantly reduced corruption 
in the 3D maps, although residual Ktrans corruption can be seen in Fig 2(c) as the motion was not 
perfectly recovered at a sub-voxel level.  The significant benefit brought by model-driven 
registration to the voxel-by-voxel fitting process is clear from the single voxel fitting results of 
Fig. 4, where the contrast agent concentration time course resulting from the model fit to the 
post-registration data is a much closer approximation to the true time course than the poor fit 
obtained from the motion-corrupted raw data. 

Discussion  Our MaDyM fitting software was able to estimate the kinetic parameters from the 
static synthetic data with good accuracy.  Kinetic model-driven registration was able to restore 
the parameter estimates from the motion-corrupted synthetic data by correcting for the induced 
motion, again with good accuracy.   
   The ability to test DCE-MRI modelling and registration processes against synthetic ground 
truth brings considerable benefits, as the difficulties in obtaining ground truth from patient or 
even animal studies are almost certainly insurmountable.  The synthetic data set presented herein 
takes a significant step towards providing that ground truth.  While in particular the registration 
was not a difficult challenge in this simple data set, its simplicity is not a disadvantage, allowing 
a straightforward interpretation of the results obtained.  If greater realism is required, within the 
framework we have developed we can readily incorporate more detailed kinetic models, and 
more complex anatomical geometries with more realistic motion patterns. 
   We propose that synthetic data of this type will prove invaluable for validating DCE-MRI 
techniques, particularly when they are to be used in clinical trials when standardisation and 
validation must be performed to exacting standards. 
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Figure 1.  Orthogonal views of the synthetic data at pre-bolus (a), 
maximum enhancement (b) and post-bolus (c) time points. 
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Figure 2.  Ktrans maps from static (a) and moving synthetic data, 
pre- (b) and post- (c) registration.  Scale is from 0 to 0.18 min-1. 
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Figure 3.  Median model parameter values for pure-tissue VOIs 
defined on the static and moving synthetic data sets (SNR = 10). 
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Figure 4.  Single voxel model fit results for static synthetic data 
and moving synthetic data before and after registration. 
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