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Introduction 
Object boundary detection is a fundamental component of automated image analysis.  In some medical imaging applications [1,2], confining the 
search space to a limited shape domain as prescribed by an active shape model (ASM)[3] has been a successful strategy for boundary identification.  
However, widespread use of the ASM in medical imaging has been restricted since it is susceptible to aberrant results or failure of convergence in 
regions of the body without distinct edges.  To create a more robust method, our proposed technique exploits the three-dimensional data available in 
magnetic resonance imaging (MRI) by utilizing object descriptors from the previous image to tune the shape algorithm in the next image.  Given the 
similarity to Markov random processes, in which the previous point determines the statistics at the current point in a series, we refer to this approach 
as a “Markov Shape Model” (MSM).  We hypothesized that this technique would greatly reduce the error rate while simultaneously accelerating 
convergence in automated object boundary detection in serial magnetic resonance images. 
 

Theory 
In the general active shape model theory [3], shapes are parameterized by an nD-dimensional vector x of n points along its boundary in D-
dimensional space.  Furthermore, any shape is assumed to be well approximated by 

  
x ≈ µx + b1p1 + b2p2 +L + bkpk,  where µx  is the mean shape, 

pk ’s are orthonormal basis functions, bk ’s are weights, and k << nD.  The mean shape of a training set T is taken to be µx  and the pk ’s are the first 

k eigenvectors of the covariance matrix Σx  of T.  Within this framework, the object is identified in an unknown image by varying bk ’s to enable the 
deformation of µx  based on local edge information.  The bk ’s search space is constrained by ±2 λk

, where λk
 are the eigenvalues obtained from 

Σx .  To create a MSM, we let y be a vector containing descriptors from an adjacent image with a mean of µy  and covariance Σy .  Assuming x and 

y are joint multivariate Gaussian random variables, from conditional model probability theory [4] then µx |y = µx + ΣxyΣy
−1(y − µy ) and 

Σx |y = Σx − ΣxyΣy
−1Σyx

.  Thus, given y, a “tuned” model can be derived using the conditional mean shape µx|y
 and the conditional covariance Σx |y .  

If x and y are correlated, the search space for this model is guaranteed to be smaller.  We applied this approach to automated outer-wall boundary 
identification of the carotid artery near its highly variable bifurcation. 
 

Methods 
From a database of high-resolution, axial T1-weighted carotid MRIs, images within 1 cm of the bifurcation from 11 carotid arteries were selected that 
represented a broad range of possible outer-wall morphology to form T.  Using the approach described by Cootes et al., a point distribution model 
was generated for T.  The vector y necessary for the MSM was defined by the width of the shape along a line perpendicular to the major axis at its 
midpoint from the adjacent more proximal slice, which was manually outlined.  Then µx|y

 and Σx |y  were generated for the MSM as previously 

described.  Each model was then iteratively deformed on 16 axial, T1-weighted images from a total of 16 different diseased and non-diseased carotid 
arteries not included in the training set.  Number of iterations until convergence was tabulated and a reviewer 
blinded to method assessed whether the identified boundary was correct. 
                                                                                                                                                

Results                                                                                                                                     
The eigenvalues for each of the dominant eigenvectors from the ASM and MSM are listed in Table 1.  The search 
space for the MSM was reduced by 70% compared to the ASM.  The mean shape and search space of the first two 
eigenvectors are illustrated in Fig. 1, where shape information from Fig. 2A is used to refine the search of the MSM 
for the object in Fig. 2B. Of the 16 test arteries, the ASM correctly identified 7 (43.75%) boundaries and the MSM 
correctly identified 15 (93.75%).  Fig. 2C and 2D contain the mean shape of the ASM and MSM, respectively, prior 
to their first iterations.  Of the 7 cases correctly identified by the ASM, the average number of iterations was 
9.7±1.4 (SE).  In those same 7 cases, the number of iterations required by the MSM was 5.9 ±0.9 (SE).  In a paired 
t-test, the MSM required significantly less iteration to converge compared to the ASM (p < 0.01). 

 

Discussion and Conclusion 
The reduced search space of the MSM as displayed in Table 1 afforded a more rapid 
convergence.  Additionally, the closer initialization of the MSM to the desired shape as 
illustrated in Fig. 2D enabled a significant increase in correct object boundary detection. In 
MRI, where serial imaging is commonplace, the MSM may be a viable tool for automated 
object boundary detection. 
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λi  
 ASM 
Value 

 MSM 
Value 

λ1 234 50 
λ2 14 13 
λ3 11 11 
λ4  2 2 

Table 1.  Eigenvalues of the 
ASM and MSM. 
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Fig. 2.  Image A is the shape proximal to the carotid bifurcation (B).  Image C and D are 
the initial shapes of the ASM and MSM, respectively.  The ASM failed to identify the 
correct boundary, while the MSM converged correctly. 

Fig. 1.  The ASM (dashed) and MSM (solid) are 
varied across their first two eigenvectors.  The dashed 
box represents the mean shape for each.  Notice the 
wide search space of the ASM compared to the MSM. 

λ1 

+

+

– λ2 

Proc. Intl. Soc. Mag. Reson. Med. 14 (2006) 829


