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Introduction 

Measurements of muscle volume are important in many biomechanical, applied physiology, and pathophysiology studies.  While high spatial 
resolution anatomical MRI methods provide a precise and accurate means for making these measurements, the need to hand-define regions of interest 
(ROIs) in multiple imaging slices is both subjective and time-consuming.  This is further complicated by partial volume artifacts and the resulting 
lack of clarity in muscle boundaries.  In this work, we validate a boundary finding algorithm based on prior models for shape and smoothness, and 
implement it in anatomical MR images of the leg. 

Methods 
Boundary Finding Algorithm An ROI containing N control points was initially hand-defined in the first imaging slice. Each adjacent pair of 

points in the ROI was smoothly interpolated into 200 points using a Catmull-Rom spline (1).  This ROI was used in the adjacent slice as the input 
information for an automated boundary finding routine employing a combined model of prior shape and smoothness constraint, as described 
previously (2).  User-selected parameters included the maximum number of iterations (ItrMAX); the maximum number of eigenvectors (εMAX), 
specifying the shape complexity; and the half search window (HSW) and region impact factor (RIF), both specifying the relative weighting of nearby 
and distant control points.  Following deformation of the ROI, the user corrected points as necessary. 

Validation Using Computer-Generated Phantoms A 
128×128 phantom having three muscle ROIs, one fat ROI, 
and two noise regions was generated (Figure 1A).  Realistic 
T1 and T2 values, partial volume effects between muscles, 
imaging parameters (TR/TE=500/18 ms), and signal-to-
noise ratio (SNR=20) values were used.  The central muscle 
ROI was expanded in each of 7 additional slices using 3rd-
order polynomial variation of the pixel positions for the 
muscle boundaries.  The algorithm was tested using: N=24; 
ItrMAX=60; εMAX =5; HSW=5; RIF=1.  ROIs were also 
drawn by hand for each slice.  For each set of ROIs, the 
pixel assignments were characterized as being true positive (TP), true negative (TN), false positive (FP), or false negative (FN).  The specificity (Sp), 
sensitivity (Sn), and positive predictive value (PPV) of pixel assignment were calculated as: Sp=TN/(TN+FP); Sn=TP/(TP+FN); and 
PPV=TP/(TP+FP).  In addition, the number of point corrections required for each slice was recorded.  Four independent trials were performed. 

Implementation in Real Images  After 
providing written informed consent, four healthy 
male subjects were imaged using a 3T Philips 
Achieva MR imager/spectrometer and an 8-
channel SENSE knee coil.  A fast spin-echo 
sequence was used with: TR/TE=500/18 ms, 
matrix=256×256; FOV=18×18 cm; slice 
thickness=2.5 mm; and echo train length=3.  The slices extended over the entire anterior tibialis (AT) muscle.  An ROI was initially drawn by hand 
around the most inferior position of the AT.  In subsequent slices, the ROI from the preceding slice was loaded, deformed, and hand-corrected.  A 
mask was formed from the ROI.  The cross-sectional area of the ROI in 
each slice was measured as the product of the slice pixel count and the 
in-plane resolution and the total volume was measured as the product of 
the total pixel count and the voxel size. 

Results 
Typical ROI placement, deformation, and correction results are 

shown in Figure 1.  Table 1 shows the point selection and ROI quality 
indices for the hand-drawn and automatically selected ROIs.  Figure 2 
shows typical results from the human imaging study.  The mean 
maximum CSA was 9.62 (SD 2.4) cm2 and the mean total muscle 
volume was 1388 (SD 240) mm3. 

Discussion 
We have validated and implemented an algorithm for the 

automated detection of ROI boundaries based on prior shape 
information and smoothness constraint.  The algorithm reduces the amount of user interaction and subjective decision making significantly, and 
results in ROI selection quality parameters that are both outstanding and comparable to those from hand-drawn ROIs.  These data show the utility of 
the algorithm for muscle boundary finding, as required in muscle physiology and biomechanics studies.  Efforts are underway to further reduce the 
number of hand corrections. 
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Table 1.  ROI detection quality parameters for manually specified and semi-automated ROIs. 

 Hand- Defined  
or Corrected Points 

Sp Sn PPV 

Hand-drawn 24 0.998 (SD 0.0) 0.995 (SD 0.001) 0.990 (SD 0.002) 

Automated 5.7 (SD 1.0) 0.998 (SD 0.001) 0.990 (SD 0.005) 0.992 (SD 0.005) 

Figure 1.  A. The phantom, containing areas of high (fat) and low (muscle) signal
(shown in this panel without noise).  B. The input ROI.  C. The ROI following
deformation (green lines and points).  D. The user-corrected ROI. 
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Figure 2.  Experimental data.  A. ROI selected within the AT muscle.  B. The
muscle CSA as a function of superior-to-inferior position along the muscle. 
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