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Introduction 
Noise in DWIs propagate into the calculated diffusion tensor and result in errors in the eigenvalues and eigenvectors. To quantify these errors a theoretical analysis 
is required. Although preliminary studies have been conducted to address this problem, no direct relationship between the SNR in DWIs and the errors in the 
calculated eigenvalues or eigenvectors has been established so far. For example, Poonawalla and Zhou1 calculated the errors in the fractional anisotropy (FA) and 
relative anisotropy (RA) without dealing with the errors in the individual eigenvalues and eigenvectors. Anderson2 used perturbation theory to investigate the effects 
of noise on eigenvalue and eigenvector estimations. However, this perturbation analysis is only valid for DWIs with moderate to high SNR. This restricts its 
practical application since DWIs typically suffer from low SNR. In this study, we derived analytical expressions based on error propagation theory3 to determine the 
errors in the tensor eigenvalues and eigenvectors in terms of SNRs encountered in DWIs.  
Methods 
First, we establish a model for tensor error estimation, and secondly identify the eigenvalue and eigenvector errors separately. Since the determination of the 
diffusion tensor depends on the diffusion encoding scheme used, we adopt a widely used tensor encoding scheme4 defined by Basser and Pierpaoli, in which the 
diffusion gradients are applied in the direction of [0,0,0], [1,0,1], [-1,0,1], [0,1,1], [0,1,-1], [1,1,0] and [-1,1,0] individually.  The measurement intensity is 
represented respectively by S0, S1, S2, S3, S4, S5 and S6. The tensor elements can be determined by4 Dxz = (-J1+J2)/(4b), Dyz = (-J3+J4)/(4b), Dxy = (-J5+J6)/(4b),         
Dzz = (-J1-J2-J3-J4+J5+J6)/(4b), Dxx = (-J1-J2+J3+J4-J5-J6)/(4b), Dyy = (J1+J2-J3-J4-J5-J6)/(4b), with J1 = ln(S1/S0), J2 = ln(S2/S0), J3 = ln(S3/S0), J4 = ln(S4/S0), J5 = ln(S5/S0), 
J6 = ln(S6/S0), and b = γ2G2δ2 (∆-δ/3). Applying error propagation theory3 to these tensor calculation equations, the errors for each element of the tensor can be 
determined. Once the tensor errors have been quantified, the errors for the eigenvalues and eigenvectors can be identified further. The eigenvalues of the tensor can 
be determined by λ1 = I1/3+(2/3)sqrt(I1
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Conducting error propagation to the eigenvalue calculation equations, the errors on the eigenvalues can be quantified.  Based on the result of eigenvalue errors, the 
errors of FA and RA can be identified further by using error propagation again. The principal eigenvector can be mathematically determined by5           
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2), with T1 = DxyDyz–(Dyy–λ1)Dxz, T2 = DxzDyz–

(Dzz–λ1)Dxy, T3 = DxzDxy–(Dxx–λ1)Dyz. Applying error propagation theory, the errors on the principal eigenvector can be determined.  
To illustrate typical errors occurring in DTI data we consider a prolate tensor in the corpus callosum of a volunteer dataset.  The signal intensity values for S0 to S6 

were determined to be 200, 138, 95, 14, 79, 42, and 23, respectively. These values produce the following eigenvalues; λ1 = 0.0017mm2/s, λ2 = 0.0003mm2/s, and     
λ3 = 0.0001mm2/s with b = 1000s/mm2.  The eigenvalues give FA = 0.871 and RA = 0.716. The SNR was defined in the range of 20 - 120 for the non-diffusion-
weighted signal S0.  The noise level was thus within the range 1.7 to 10. We use the same noise level for all of S0 - S6 to determine the eigenvalue and eigenvector 
errors. As we can see, for the maximum noise level of 10, the SNR for the image with the greatest signal attenuation S3 is reduced to 1.4. 

   Results 
Figure 1 shows the eigenvalue and principal eigenvector errors as a function of the SNR of S0. The errors for the eigenvalues and eigenvectors decrease as SNR 
increases. With SNR of 80, the relative error on λ1 is 10%. However for λ2 the error is 60% and for λ3 the relative error is 100%. The large relative errors for λ2 and 
λ3 are due to their small values rendering their values imprecise. The principal eigenvector angular error at SNR of 80 is 6°. However, this error increases to 23° 
when SNR falls to 20. Figure 2 shows the FA and RA error as a function of SNR of S0. The relative error for FA is clearly smaller than that of RA at any given 
SNR. This is shown in the righthand diagram of Figure 2 with SNR(FA)/SNR(RA) = 2.02, consistent with previous theoretical analysis6.  

Conclusion  
We have established analytical expressions for the noise induced errors in the diffusion tensor elements, tensor derived metrics and the eigenvalues and eigenvectors. 
These expressions can be used to determine the errors for any given tensor geometry and for any SNR conditions. In particular these expressions can be used to 
evaluate errors in principal eigenvector orientation which has implications for diffusion tensor tractography. These expressions can also be used to aid DTI protocol 
design such as those aimed at detecting subtle changes in tensor parameters as a result of pathology. 
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Figure 1. Plots of eigenvalue and principal eigenvector errors as a function of signal to noise ratio of S0.  

 
Figure 2. Plots of FA error, RA error and SNR(FA)/SNR(RA) as a function of signal to noise ratio of S0.  
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