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Abstract: The current clinical practice of manually tracing the endocardium and blood pool to compute the left ventricular (LV) ejection fraction (EF) from cine-
magnetic resonance images (cine-MRI) is labor intensive, time consuming, and operator dependent. We used spatio-temporal information in the LV cine-MRI to 
automatically estimate the EF in 64 subjects (21 normal volunteers, and 43 patients). This entirely data-driven, multi-step approach incorporates apriori geometric 
information from the acquisition and spatial-temporal information that is intrinsic to cardiac cine-MR. The results show that the mean bias values determined by Bland-
Altman (BA) analysis for volumetric computations using our algorithm for end-diastolic (ED) and end-
systolic (ES) phases and hence for EF are in close agreement with inter- and intra-observer variability.  
Introduction: A reliable automatic method to segment the LV cavity in short-axis cine-MR would 
eliminate the cumbersome practice of manual segmentation by experts and would reduce intra- and 
inter-observer variability. Recent efforts for automatic delineation of the LV endocardial contour, 
circumscribing the papillary muscles and trabeculae, involve energy minimization between the image-
derived features and the statistical LV shape [1-5]. We propose a data driven, 2D slice-by-slice 
approach incorporating spatio-temporal information intrinsic to cardiac cine images. The purpose of 
this paper is to describe our segmentation approach and to investigate its clinical feasibility.  
Materials and Methods: The studies were performed on 21(13m/8f) healthy volunteers, with a 
mean age of 34 years (range 22-54), and 43 years (10m/3f) clinical patients, with a mean age of 55 
(range 17-78), all of whom were evaluated for LV dysfunction.  
MR Sequences: All subjects were imaged on a 1.5T, Philips Gyroscan NT-Intera, using a 5-element 
phased-array surface coil. Vector-cardiographic (VCG) gated cine SSFP images (TR/TE/flip: 3.2 
msec/1.6 msec/60 deg; temporal resolution: 40 msec; acquired spatial resolution: 1.25 x 1.25 x 8 mm3) 
were acquired in the following order: a vertical long-axis (VLA) view, a 4-chamber (4CH) view, and a 
series of 10 to 13 contiguous short-axis (SA) slices covering the entire LV from apex to base (the level 
of the mitral valve annulus). Each cine slice was acquired during suspended respiration (10-12 
heartbeats). 
Algorithm: The algorithm involved the following steps 1) Maping the intersection line of the VLA 
and 4CH scout images onto the stack of SA images to locate the LV (Fig. 1a); (2) threshold the LV 
blood using a histogram of the 3D spatio-temporal data; (3) identify the LV in each SA slice from 
base to apex using a cross-section of VLA and 4CH, thresholded blood,  and progressive 3D 
geometric continuity constraints; (4) segment the LV using dynamic weights fuzzy connectedness 
algorithm; (5) successively threshold the LV region of interest (ROI) to compute LV blood and myocardial intensity statistics (Fig. 1b); (6)  convert the data for the LV 
ROI into polar coordinates and compute the ED endocardial contour as the optimal path using dynamic programming; (7) perform 3D filtering on spatio-temporal data 
in the polar coordinates with the center of the ED LV as the origin (Fig. 1c) and threshold the LV blood based on the histogram (Fig. 1d); (8) perform a 3D hole filling 
on the thresholded LV blood (Fig. 1e); and (9) compute the endocardial contours for the ED and ES phases (Fig. 1f-g). 
Results: A total of 1078 slices (343 slices from 21 volunteers and 735 
slices from 43 patients) were analyzed using our algorithm (A) and 
manually by two experts (R1 and R2). The first expert repeated the contours 
after two weeks (R1a and R1b). Some representative images describing the 
segmentation process are shown in Fig. 1, and the BA comparisons are 
shown in Table 1.   
Discussion: The results show that the mean bias as determined by BA for 
volumetric computations using our algorithm for the ED and ES phases for 
all the 3 LV sections to be in close agreement with inter- and intra-observer 
variability (<1.2% EF; <8 ml/5% EDV; 5 ml/7% ESV). In the ED phase, 
independent of the anatomic location of the LV (i.e., basal, mid-cavity, or 
apical), the limits of agreement were small (<5% EDV). However, in the ES 
phase, the limits of agreement for the mid-cavity (<19% ESV) and apical 
(<11% ESV) slices were twice that of the inter- and intra-observer 
variability but were still less than 25% for the ESV.   
Conclusion: Our clinical evaluation in 64 subjects using BA analysis 
show that the data-driven, slice-by-slice segmentation approach utilizing 
apriori, and spatio-temporal information can estimate the EDV, ESV, and 
EF in close agreement with inter- and intra-observer variability.  
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A/R1a A/R2 R1a/R2 R1a/R1b 
 

Bias 2SD Bias 2SD Bias 2SD Bias 2SD 

Basal (ml) -1.62 7.05 -1.26 7.37 0.37 7.99 -4.46 7.06 

Mid-cavity 
(ml) 

-2.55 7.38 -4.67 7.65 -2.12 4.43 -1.79 4.78 
E 
D 

Apical (ml) -1.31 6.79 -4.53 7.84 -3.21 6.21 -2.01 5 

Basal (ml) -3.24 5.68 -1.84 6.9 1.4 5.2 -0.85 4.66 

Mid-cavity 
(ml) 

0.02 13.03 -2.27 13.67 -2.28 5.4 -1.87 5.59 
E 
S 

Apical (ml) -0.51 8.03 -1.99 7.46 -1.49 4.26 -1.51 4.5 

EDV (ml) -5.49 13.52 -10.45 16.26 -4.96 10.49 -8.26 12.62 
 

ESV (ml) -3.73 17.07 -6.1 17.16 -2.37 8.96 -4.22 11.63 

 EF (%) 1.13 10.01 1.2 10.1 0.07 3.93 0.05 4.98 

Figure 1: Algorithmic overview and Bland-Altman analyses. 

Table 1: Bland-Altman comparisons between the automatic and manual methods for 3 
different sections of the LV correlated to the papillary muscles and trabeculae. 
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