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Synopsis: In Magnetic Resonance Imaging (MRI), pulsing of magnetic field gradients induces time-varying eddy currents in nearby conductors. These secondary fields 
are a major cause of concern, since they degrade the image quality by causing misregistration and intensity/phase variations in both images and spectra. A numerical 
characterization of deleterious eddy current effects is vital for their compensation/control and further advancement of the MRI technology. A robust analysis scheme 
allows more complete design and optimisation of gradient coil/magnet combinations and provides indicative predictions of the pre-emphasis and B0-shift compensation 
waveforms required. We present a novel three-dimensional (3D) finite-difference time-domain (FDTD) method in cylindrical coordinates for modelling of low-
frequency transient eddy currents and associated temporal side effects encountered in MRI. 
 
Methods: The FDTD method is routinely used for high frequency applications, due to its simplicity and efficiency in wave models. In low frequency and high-
resolution applications, however, Maxwell’s formulations in standard FDTD form suffer from a prohibitively long execution time. Maxwell’s equations are adapted to 
the low-frequency regime by downscaling the speed of light constant, which permits larger time steps while maintaining the validity of the Courant-Friedrich-Levy 
stability condition. The low-frequency FDTD scheme is formulated in cylindrical space, which avoids the presence of ‘stair-case’ errors typically associated with the 
FDTD computations in Cartesian coordinates [1]. Additionally, the scheme conforms well to the cylindrical structures used in MRI.  
 
1. The central-differenced FDTD form of Maxwell’s update equations in cylindrical coordinates can be written: 
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Where r∆ , φ∆  and z∆ are radial, azimuthal and axial cell dimensions, respectively. A general arrangement of EM field components in a cylindrical cell is illustrated in 

Figure 1. An alternate time-stepping expression involving exponential coefficients is used to replace the standard linear coefficients. This precludes any diffusion 
instabilities that may be caused by the exponential decay of propagating waves inside good conductors. The standard linear coefficients [2]: 

t

t
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2 are replaced with the following exponential coefficients, respectively: εσ /te ∆− and 
σ

εσ /1 te ∆−− , where )( 0αεεε r=  and α is a scaling factor. 

 
2. The adaptation of the conventional FDTD scheme to low frequency 
applications can be achieved by scaling up the permittivity and leaving the 
permeability of free space unchanged [3]. The downscaled speed of light 
constant αc and stable time step t∆  are then given by:  

  

111

                          
1

 
22

min

200
⎟
⎠

⎞
⎜
⎝

⎛

∆
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆
+⎟

⎠

⎞
⎜
⎝

⎛

∆

<∆=

zrr
c

k
tc t

ϕ

α
εαµ

α

α

 

where α is a dimensionless scaling factor, 0µ  is the permeability of free space, 

0ε  is the permittivity of free space, αε  is the scaled free space permittivity, tk is 
the safety coefficient (< 1) and minr  is the minimal radial component to be 
studied (here: rr ∆= 5.0min ). 
 
3. The numerical singularity associated with the polar axis in cylindrical 
coordinates is removed by the use of series expansion for the field quantities in 
radial dimension [4]. The singular radial magnetic and azimuthal electric field 
components are approximated by the following regularity conditions: 
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The axial electric field component is obtained by considering Amperes law 
through a closed circular integral path of radius r∆5.0 around the polar axis:  
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4. A split version PML absorbing boundary condition (PML-ABC) of cylindrical 
type has been adopted from Berenger’s original PML theory based on Cartesian 
space [2]. In 3D cylindrical coordinates, only field components in radial and 
axial dimensions need to be considered in the PML region, which simplifies the 
3D PML problem to only two dimensions.  In order to retain the perfectly 
matched boundary condition at the air-PML interface, one should additionally 
scale the electric conductivity σ  of the PML region by the same factor. The 
magnetic conductivity *σ  boundary condition is then given by:  

αε
µασσ 0* )(=

 

Results: The numerical scheme is verified against a FEMLAB benchmark 
involving a current carrying coil (radius = 0.03m, cross section = 0.002 x 
0.005m) centred inside a hollow cylindrical metal shell (radius = 0.06m, 

thickness = 0.01m) with a material conductivity of 5e5 S/m. A 500Hz-
trapezoidal current and rise time of 100us, has been used to excite the coil. With 
a time step 7103096.1 −⋅=∆t , it took around 16 min of CPU time and 37.3 MB of 
computer memory to calculate the transient electromagnetic field up to 2 ms in 
duration. The FDTD results provide data on the total field inside the conductor 
(superposition of primary and secondary field). The primary field can be 
computed with Bio-Savart’s Law or the FDTD method with no conductors in the 
computational domain and then subtracted from the total field to obtain the 
secondary eddy current field. The simulation results are illustrated in Figure 1. 
For detailed temporal eddy current results from a range of gradient coil designs, 
please refer to paper (Trakic et al, FDTD Analysis of transient eddy currents 
induced by gradient coil switching in MRI, ISMRM 2006, submitted). 

    
Figure 1 – Arrangement of EM-field components in cylindrical Yee cell (left); Transient 
validation result of azimuthal electric field inside the conductor (

INCE  is the incident,  

EDDYINCE +  is the total and 
EDDYE  is the eddy current azimuthal electric field inside the 

conductor, respectively) 
 
Conclusion: A prototype ‘c-downscaled’ FDTD algorithm in 3D cylindrical 
coordinates for the analysis of temporal low-frequency eddy current fields has 
been presented. A targeted application is the combined optimisation of gradient 
coils and magnet geometries as well as the preselection of initial pre-emphasis 
and B0 compensation waveforms. 
 
Acknowledgement: Financial support for this project from the Australian 
Research Council is gratefully acknowledged. 
 
References:  
[1] C. Cangellaris et al., IEEE Trans. Anten..Prop.,39 (1991), 1518-1525 
[2] A. Taflove, Computational Electrodynamics, 1995 
[3] R. Holland et al., IEEE Trans. Elec. Comp., 36, 1 (1994), 32-39 
[4] F. Liu et al. IEEE Trans. Appl. Supercon., 14, 3 (2004), 1983-1989 

Proc. Intl. Soc. Mag. Reson. Med. 14 (2006) 1373


