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Measurement of Cross-Axis Gradient Eddy Currents 
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Wisconsin, United States 
Introduction:  Traditionally, it has been assumed that eddy currents produced by switching a given gradient channel manifest 
themselves as gradient eddy currents on the same axis.  However, as gradient slew-rates have increased, cross-axis eddy currents have 
been observed.  Various methods to measure actual k-space trajectories [1,2,3,4] produced by the gradient hardware have been 
described in the literature.  We have taken the self-encoding method, first described by Onodera et al. [1] processed the data using the 
Fourier transform method described by Alley et al. [4] and expanded the method to quantify the cross-axis gradient contribution.  
 
Methods:  Figure 1 depicts all the gradients and RF waveforms used to measure the k-space trajectory.  
Let us first assume that the Z gradient is used as a test waveform.  The pulse sequence begins with a non-
selective RF pulse reducing the risk of inducing eddy currents from the slice-select gradient.  A self-
encoding gradient pulse is then applied on the Z axis.  Simultaneously, a cross-encoding gradient is applied 
on the X or Y-axis.  After a short delay (256us) the test gradient is applied on the Z-axis.  The self- and 
cross-encoding gradients are then rephased, the test gradient is rephased and finally, killer gradients are 
played to dephase the magnetization left in the transverse plane.  The sequence then repeats after a 
prescribed delay time.  Data acquisition begins after the self-encoding pulse and ends before the self-
encoding rewinder gradient pulses.  The self- and cross-encoding gradients are stepped in a 2D fashion 
resulting in a 3D (kx, kz, time) data set.  When this is complete the cross-encoding axis is switched to Y 
and the sequence is repeated. A 10cm sphere was placed at the isocentre of the magnet and shimmed and 
used for these experiments.   
 
The step size in the self-encoding dimension is set to ∆kz=1/(FOV) resulting in a phase-encoded image with an FOV slightly larger 
than the phantom.  We chose 15cm.  The algorithm to extract the on-axis k-space trajectory is exactly as described by Alley [4]  In the 
cross-encoding dimension, the k-space deviation is expected to be a small fraction (typically less than a percent) of the on-axis 
dimension.  To measure this smaller k-space trajectory, we chose ∆kx and ∆ky to be 1/10 of the on-axis dimension.  The number of 
cross-encoding steps was also reduced to sixteen to make acquisition time reasonable.  The small ∆kx and reduced number of cross-
encodes made it impossible to process the cross-axis data using Alley�s technique as the phantom was reduced to a single pixel in x or 
y.  (Pixel size=FOV*10/Nself =10*15cm/16=9.375cm.)  As described by the original self-encoding paper, the k-space trajectory can be 
found by locating the peak of the signal in the self-encoding dimension.  With a well shimmed spherical phantom, the magnitude of 
the k-space data in the cross-encoding dimension is a Jinc-like function and its central part was fit with a quadratic equation.  The peak 
of the fitted parabola was then used to determine this k-space trajectory.    
 
Results and Discussion:  The measured k-space trajectories on the X, Y and Z-axes are plotted in Figure 2.  The waveform on the Z 
axis is the expected trajectory for a trapezoidal test gradient.  The last plot on Figure 2 shows the Z-gradient waveform calculated by 
differentiating the measured Z k-space trajectory.  The eddy current is driven by the time derivative of the gradient waveform.  For a 
trapezoid, the driving function is a positive rect function during the up-ramp and a negative rect function during the down-ramp as seen 
in Figure 3.  The actual eddy current is a convolution of this driving function with a small number of single-sided exponential decay 
terms.  To demonstrate this, the cross-axis eddy current compensation was deliberately misset.  The measured cross axis trajectories 
are plotted in Figure 4.  The characteristics of the curves change as a function of the exponential term amplitude and time constant.   

 
 
 
 
 
 
 
 
 

Conclusion:  This technique shows promise for calibrating a system to reduce or eliminate cross axis gradient eddy current distortion.  
However there are some limitations of the measurement technique.  Generally, this technique can only be applied on a system that has 
already been roughly calibrated.  Long term eddy currents will bias the results.  Only eddy currents shorter than the T2 of the phantom 
can be measured.  Despite these limitations, we are able to characterize the short time constant cross-axis eddy currents. 
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Fig 2. Measured 
X, Y and Z k-
space trajectories.  
Gradient 
waveform at 
bottom is derived 
from measured kz 
waveform. 
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Fig 3. Gradient 
waveform and 
Slew-rate 
waveform.  
Any induced 
eddy currents 
are driven by 
the dB/dt 
waveform. 

Fig.4. 
Measured 
cross-axis 
eddy current 
k-space 
trajectory.  

Figure 1. Pulse Sequence 
used to measure gradient 
and cross-axis eddy 
currents 
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