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Introduction 
 Despite the best efforts of shielded gradient coil designers, flux leakage during gradient switching induces eddy currents in surrounding metal. The transient fields 
Bz(t) then generated can have a spatial variation that is anything but a linear gradient. Working in spherical polar coordinates, these fields at some point P(r, θ, φ) may 
be a sum of spherical harmonics rnPn

m cosθ( )eimφHn
m t( ) of order n and degree m, where P are the associated Legendre polynomials and H(t) are functions of time. 

Typically, the lowest order fields, including n = 0, are greatest. To annul such fields one could tediously measure the various time dependences H for each harmonic and 
then arrange for the appropriate annulling transient currents to be passed through the shim coils. However, with any change of experiment or equipment, the process 
could well have to be repeated. We therefore research a different approach: measure each changing spherical harmonic field by electromagnetic induction with the aid 
of  a SHID (Spherical Harmonic Inductive Detection) coil dedicated to detecting that harmonic alone, and then, in a negative feedback configuration, pass the temporal 
integral of the induced voltage (to some limiting, very-low frequency to avoid drift) back to the appropriate shim coil. Such “flux stabilisation” was a staple of early 
resistive magnet design for n = 0, m = 0; we aim to extend the principle to higher orders and degrees and report here on the successful design and fabrication of the 
necessary sensing coils. 
Theory 
 The e.m.f. ξ induced in an arbitrary wire path l by a changing magnetic field B is given by  
         ξ = − ∂

∂t
A ⋅ dl∫ ; B = curlA                [1] 

Our task then is to compute vector potential A for each spherical harmonic field Bz and then determine a wire path that sets ξ to zero for all harmonics but the one of 
interest. Let the wire path be distributed in the magnet bore over the surface of a cylinder of radius a. Then in volume dV,  dl = W dV and vector winding density W 
may be decomposed into axial z and azimuthal y components Wz(z,ψ) and Wψ(z,ψ), with the azimuthal variations expressed as Fourier series in a familiar manner. Their 
Fourier coefficients are respectively Fm´ (z) and Gm´ (z). As the windings are confined to the surface, they must obey the continuity equation div W = 0, and hence, as 
usual, if we know Wz, we know Wψ and vice versa. 

Under the quasi-static approximation, B is both curl A and the gradient of a scalar potential Ψ. Now, the individual Cartesian components of B and A are solutions 
to Laplace's equation, as is Ψ,  and all can be written in terms of spherical harmonics. Relationships between these components can be found by equating the magnetic 
field derived from A with the field from the scalar potential. When the algebra is complete, the harmonic component of the z-directed magnetic field  
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 is related to the Cartesian components of the vector potential through Ba,n,m and  Bb,n,m as:  

Ax,n,m = Bb,n,mTn+1,m+1 − Ba,n ,mTn+1,m+1
/{ };Ay ,n,m = Ba,n,mTn+1,m+1 + Bb,n,mTn+1,m+1

/{ };Az,n ,m =
(1−δm,0)

(n + m +1)
−Bb,n ,mTn+1,m + Ba ,n,mTn+1,m

/{ };β = 1

(n + m + 1)(n + m + 2)

  [3] 

Integrating A.W azimuthally gives a non-zero result only when the degrees m+1 of Ax and Ay, and m´ of W are equal. In other words, a winding-density Fourier 
component that varies as cos(m´ ψ) only responds to a field that varies as cos(mψ) when m´ = m. As we now know the required azimuthal variation of W to detect a 
field of degree m, it remains to determine the required axial variation.  

Integrating axially the results of the azimuthal integration, we arrive at an expression (essentially ΦT the winding flux linkage) whose temporal derivative 
gives the voltage induced in the windings. Turning to a matrix representation, let discrete axial winding positions on the cylinder be given by z = q∆z, where q runs from 
1 to qmax.  The flux linkage for cosinusoidal variations is then: 
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       [4] 

where (fq, αq) represent the spherical coordinates of q∆z, and the winding Fourier coefficients of degree m are Fm(q∆z) and Gm(q∆z).  

Eqn [4] can be written in a matrix form Φm = Sm.Wm, where Φm is a column vector of the flux contributions from the various orders n of the magnetic field of 
degree m, Wm is a vector comprising the Fourier components of the wire density and Sm is a rectangular matrix depending on the coefficients Ba,n,m. The sum of the 
elements of Φm equals the total flux, Φ

T
, from eqn [4]. The matrix equation is extended with sinusoidal variations and constraints div W = 0 and no wire at cylinder 

ends (1). To design a SHID coil, all elements of Φm ,except that desired, are set to zero and the elements of Wm are determined using the pseudo-inverse of Sm (1).  
Simulation: 
 To determine the effects of the discretisation and interconnect process when using the stream function of the winding density to reveal the wire path, a simulation 
program was written. The simulator integrated the vector potentials of Eq. [3] along the SHID wire path. When the Fourier coefficients of the continuous wire 
distribution were placed in Eq. [4] it was found that they would reject unwanted harmonics by 16 orders of magnitude. The simulator revealed that the rejection of 
unwanted harmonics depends on the number of contours taken from the stream function of Wm. Not surprisingly, the more contours, the better the approximation of the 
continuous function and the greater the rejection. For example the sparsely wound n = 2, m = 1 SHID coil with layout shown in the figure has a response to an n =  4, m 
= 1 harmonic that is 3800 times less than its response to the 2,1 harmonic while responses to all other 
harmonics are reduced even further.  
Discussion 
 The question arises of what weights to assign the Ba,n,m coefficients in Eq. [4], when the matrix Sm is 
constructed, in the light of their rn dependence and computational rounding errors. The coefficients describe a 
fictitious magnetic field against which the SHID coil is designed. Ideally the flux response of a SHID coil 
should be proportional to one of these terms and independent of all the others making any non-zero choice 
valid. In practice the designs are slightly imperfect. If a particular Ba,n,m is chosen proportionally much 
smaller than the other coefficients, the rejection ratio for that harmonic could be degraded. Thus some 
scheme should be employed to put the Ba,n,m's on a fair playing field. Choosing the coefficients to represent a 
magnetic field where each harmonic component has the same amplitude on the spherical surface of the 
region of interest produced good results. Finally, testing of the SHID coils with a standard z gradient coil in a 
model system is underway and proceeds well. It is planned to use a 20 cm diameter aluminium pipe (not 
necessarily coaxial) to generate eddy current fields.  
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