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Introduction 
 A standard mathematical approach to the design of magnets, gradient coils, shim coils etc. is first to expand the field from an elementary current in a basis set. 
That set, comprising solutions of Laplace’s equation, is dependent on the coordinate system chosen and for most applications, cylindrical polar or spherical polar 
coordinates are appropriate. Once the elementary field expansion is known, one may then, with a variety of strategies, extend the analysis to distributions of current and 
solve the inverse problem of finding the current distribution that generates a so-called “target field”.  
 Occasionally, use of a Cartesian coordinate system would be helpful. For example, a “magnetic wall” that creates a homogeneous field over a cuboidal volume 
(width 50 cm, height, depth 20 cm) in front of it would be advantageous for “walk-up” mammography. However, to quote Morse and Feshbach (1), the Greens’ 
function – the basis of the current determination – is in “a particularly obdurate form” in Cartesian coordinates and the desired expansion is not forthcoming. Nor do 
standard texts on electrodynamics, e.g. “Jackson”, give solutions for this problem and the author has found no solution in the literature. Thus a solution is given here. 
The Field Due to a Point Current Source 
 Let there be a current at point Q(x0, y0, z0) given by JdV where J is vector current density and dV = dx0 dy0 dz0 is an elementary volume. Then at some point of 
interest P(x, y, z), the magnetic field dB is given by the Biot-Savart law (2) as 
         dB = µ0

4πr3
J × r( )dV; r2 = x − x0( )2 + y − y0( )2 + z − z0( )2        [1] 

where r is the vector joining Q and P. As is usual for magnetic resonance applications, we consider only the z component of B. Then 
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Let the field derivative be a 2D forward Fourier transform in χ and η. Then, if kx and ky are the Fourier-conjugate xy variables, after some algebra, the transform F is:  
        

F = µ0
4π

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ e−ikx x0e

−iky y0
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

JxI1
η − JyI1

χ{ }; I1 =
η
χ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−∞

∞
∫

−∞

∞
∫

e−ikxχe
−ikyη

χ2 + η2 + ς 2( )dχdη
       [3] 

Thus far is obvious; the challenge is the formidable integral. Surprisingly, with algebraic drudgery and two published integrals (2), we may obtain for z > z0: 
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where kz is in accord with Laplace’s equation. Importantly, there is a two-dimensional Fourier relationship between F, the transform of the field, and the current density. 
 We may now follow a well-worn path. Let current flow in a plane of thickness ∆z0 at  z =  z0 and let a target field be defined in the xy plane. That field is 
homogeneous over a desired rectangle and eventually goes smoothly to zero outside. As in the current plane div J = 0, it may be shown after further algebra that if Hx, 
Hy are the inverse 2D Fourier transforms of currents Jx and Jy, and G is the inverse 2D Fourier transform of the target field, 

         
Hx = 2i

µ0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ky

kz
ekz z−z0( )⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

G; Hy = −2i

µ0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

kx

kz
ekz z−z0( )⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
G

        [5] 

In summary to obtain the current to produce a desired field, we define a target field in the xy plane, inverse-transform it, multiply that transform by k-space weighting 
functions to obtain  Hx, Hy and then forward transform to obtain current densities Jx and Jy.  
Discussion 
 There are two important points to note when applying Eqs.[5]: First, the positive exponent kz(z – z0). Unless G, the transform of the field, diminishes to zero faster 
than the exponential rises, functions H are not convergent in k-space and no result can be obtained. One cannot expect distant windings to produce a field limited to a 
small region. Second, homogeneity of field in the xy plane does not guarantee homogeneity in z; rather, by Laplace’s equation, it means that ∂2Bz /∂z2 = 0 and so Bz = 

B0 + Gzz. As the field in the xy plane is always the same target field, regardless of the position of the current plane, this means that variation of planar current amplitude 
with z0 cannot affect the field dependence on z. Rather, it is the form of the roll-off of the target field that determines the gradient strength Gz. Fortunately, checking for 
a suitable roll-off is relatively easy. Setting ∂Bz /∂z = 0, as G is the inverse Fourier transform of Bz, we may then shown that along the z axis we must strive to attain  
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This approach can be extended to higher orders of variation with z. The figures below show one of many scenarios that fulfil this criterion.  
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