Biocompatibility of Sapphire and Borosilicate glass for Neural Prosthesis Using MRI and Histopathology

K. Parthasarathy1, Y. Shen2, K. Brabant3, J. Li2, Y. Cheng2, G. W. Auner2, J. P. McAllister II2, E. M. Haacke2
1Department of Electrical Engineering, Wayne State University, Detroit, Michigan, United States, 2Department of Radiology, Wayne State University, Detroit, Michigan, United States, 3Department of Neurosurgery, Wayne State University, Detroit, Michigan, United States

Introduction: Development of new biomaterials for neural implants has been a significant area of research and development for the academic and industrial communities. Our overall goal is to demonstrate the feasibility of a neuroprosthesis interfaced with the cerebral cortex. To achieve this goal we have used high resolution magnetic resonance imaging to evaluate the biocompatibility of sapphire and borosilicate glass implanted onto the brain. Due to its excellent mechanical, optical, electrical and chemical properties, sapphire has found tremendous application potential in opto-electronics, nuclear power, medical and biomedical devices. To date, there has not been much research on the use of sapphire based medical devices in neural systems (central or peripheral).

Materials and Methods: Twelve healthy adult Sprague-Dawley rats were studied under the institutionally approved animal protocol. The neuro-compatibility of pure sapphire (n=3) and borosilicate glass (n=5) samples (2.5mm diameter x 0.25mm thickness) implanted on the surface of an adult rat cortex for 10 and 28 days was evaluated. Sham-operated and mechanically-lesioned samples were used as controls. Non-invasive testing was performed using MRI on the 1st (pre-implantation), 10th and 28th days (post-implantation) with a 4.7 Tesla BRUKER animal system. A T2 weighted spin echo sequence and 3D high resolution T1 weighted sequence with resolution of 62.5 μm x 62.5 μm x 0.25 μm with TR’s of 3664.7ms, 19.5ms, TE’s of 67.5ms, 9.35ms respectively were collected in order to evaluate the in-vivo biocompatibility of the materials. This method allowed in vivo evaluation of edema, inflammation and cortical tissue at the implant interface. The local tissue intensities near the implant from the T2 weighted images were normalized using the intensity of the white matter. In the same animals, light microscopy was used to identify degenerating axons and neurons as well as reactive astrocytes using Nissl and silver stains and GFAP immunochemistry at 28-days post-implantation.

Results: All MRI data was processed with the custom developed software SPIN. The intensity values from the T2 weighted images beneath[1] the sham control and BSG animals on the 10th day were high due to the post surgery effects. However, on the 28th day the intensity values beneath the implant were very similar to that prior to implantation (Figure 1 a & d). Signal intensity increased on the 10th and 28th day because of the lesion created (Figure 1b). Neither the histology nor the high resolution MR images showed any effect on the borosilicate glass and sham control animals. High resolution images of sapphire implants showed the presence of hemorrhage (Figure 2[p4]) on the 10th and 28th day and scar tissue between the bone and the implant. Since hemorrhage contains hemosiderin which is paramagnetic, it causes a marked change in phase on the 10th and 28th days. Histology[p5] showed reactive astrocytosis, hemorrhage and inflammation adjacent to the sapphire implants and at varying depths through layer III of the cerebral cortex. Increased axonal degeneration was seen in the subcortical white matter[p6].

Discussion and Conclusion: MRI and histopathology results correlate with each other in assessing the presence of hemorrhage, inflammation and tissue interference with sapphire implants and for verifying the compatibility of different materials used for the development of cortical visual[p7] prosthesis and prototype devices for Parkinson’s disease and other movement disorders. These results suggest that in order to enhance the biocompatibility of sapphire by retaining its excellent, mechanical, optical, electrical and chemical properties – surface modification is necessary[p8]. Overall, MRI has proven to be a sensitive means by which to monitor the tissue/implant interface and any possible deleterious effects the implant might have on living tissue.

References:
1. A comparative study of human skin thermal response to sapphire contact and cryogen spray cooling. Anvari B; Milner T E; Tannenbaum B S; Nelson J S. IEEE transaction on biomedical engineering (1998 Jul), 45(7), 934-41

Acknowledgements:
This study is supported by Michigan Life Science Corridor (M.L.S.C) # MEDC - 294