
Fig 1. Dependence of the CNR(β) on the fraction of k-
space used for image reconstruction for CNR0=[1.0, 
1.5, 2.0, 2.5]. Symbols on the curves indicate the 
maximum achievable by CNR(β) for the given CNR0. 

Fig 2. T2w image reconstructed by (a) the standard technique (β=1.0), I8 and (b) CNR-
based variable resolution reconstruction, F. The white arrows indicate regions of 
improved small vessel details and lower noise in Fig 2(b) when compared to Fig 2(a).  
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Introduction  
In MRI, the theoretically achievable spatial resolution is characterized by the extent of k-space used for image reconstruction. Spatial resolution increases with the 

extent of k-space sampled. Since noise in MRI data is “white” (uniformly distributed across the k-space), sampling more k-space results in adding more noise to the 
image. Contrast resolution is the contrast at which an object can be discriminated from the background and depends on the object size and image noise.  Therefore, 
increasing k-space coverage to improve spatial resolution might make the image noisy and thus reduce contrast resolution of the low contrast-to-noise (CNR) structures. 
In this study, we propose an extension of the variable resolution reconstruction technique [1], by utilizing the local CNR value to improve the visibility of low intensity 
objects such as vascular structures in black blood MRA (BB-MRA). 

 

Theory  
The relationship between the noise standard deviation and the fraction of k-space data, β, used for reconstruction is given by, σβ =β 1/2σ,  where σ and σβ are the 

noise standard deviation of the images reconstructed using the entire and β  fraction of k-space, respectively. Since a vessel is predominantly a one-dimensional 
structure, it is mainly blurred in two dimensions orthogonal to the vessel long axis when a fraction of k-space data is used for reconstruction. It can be shown that if the 
vessel cross-section occupies one voxel in the image reconstructed from the complete k-space data, the 
fraction of the voxel occupied by the vessel is reduced to β 2/3 when the image is reconstructed using only 
β fraction of k-space. Similarly, the contrast of a single vessel voxel changes from C0 to β 2/3C(β) when the 
fraction of k-space used in reconstruction reduces from 1 to β. Therefore, the CNR of a single vessel voxel as 
a function of β is given by: 
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In BB-MRA images, the vessel intensity distribution can be modeled by a Rayleigh distribution (assuming 
complete suppression of the blood signal), whereas the background tissue intensity distribution can be 
described by a Gaussian distribution due to its high SNR [2]. The contrast between vasculature and tissues in 
BB-MRA is given by C(β)= µb(β)-µv(β); where µb(β)=µb is the mean of the background tissue distribution 
and µv(β) is the mean of Rayleigh distribution which is given by µv(β)=(π/2)1/2σβ. Eq. [1] for a single voxel 
is simplified to obtain the CNR for BB-MRA, as a function of β as follows:       
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Given µb and σ, a unique value of β where CNR(β) is maximum, βmax, is given by 
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where CNR0 refers to the CNR at β =1 {CNR0= (µb/σ −(π/2)1/2 )}. From the Eq. [3] it follows that CNR between the vessel with a single voxel cross-section and the 
background tissues can be improved by using reduced fraction of k-space in reconstruction only if CNR0 < 2(2π)1/2-(π/2)1/2 =3.76. 
The main steps of the algorithm:  
1. Create a set of image volumes with different fractions of k-space zero-filled to 
the acquired volume. E.g.: reconstruct nine different image volumes Ii, i=0,1…8; 
using different fractions of  k-space βi  calculated using Eq [3] for CNR0 
=0.0:0.5:3.76. (Note: I8 denotes the image reconstructed with full k-space) 
2. Compute CNR0 values for each voxel r in I8 (i.e.β =1) as follows:  
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where µe(r) is the estimate of the surrounding background mean in a (5x5) 
neighborhood of r.  
3. Construct the final image F by using the CNR values at each voxel r using:  
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Results 
The proposed technique was validated using data from a black blood MRA study acquired on a 1.5 Tesla GE SIGNA Lx 8.4 MRI scanner (GE Medical Systems, 

Waukesha, WI) using a quadrature head coil. The acquisition parameters for dual contrast 3D FSE were: TR=1600 msec, TEPD=13 msec, TET2=93 msec, ETL=12, 
Rbw=±31.5 kHz, FOV=230×153.3 mm, acquisition matrix= 384×256, 16 slabs, 6 slices/slab, 0.6 mm slice thickness. Fig. 1 illustrates the dependence of the CNR(β) for 
CNR0=[1.0,1.5,2.0,2.5] and the symbols indicate the value of CNR(βmax ). A slice obtained by reconstructing the T2w volume using β =1 fraction of k-space is shown in 
Fig. 2(a) and the same slice in the T2w volume reconstructed using the proposed CNR-based variable resolution method is shown in Fig. 2(b). It can be seen that the 
image reconstructed using our algorithm (Fig 2 (b)) has less noise and better delineation of small vessel details (indicated by the arrows).  
 

Discussion and Conclusions 
In this work, we have shown that the theoretical knowledge of vessel and background tissues intensity distributions in MRA datasets can help in formulating a 

variable resolution reconstruction algorithm to improve the quality of the BB-MRA images. This analysis demonstrates that the amount of k-space required for optimal 
visualization of vessels in BB-MRA images depends upon the CNR of the vessel voxel and that the CNR of vessel voxels can be improved by using a variable 
resolution reconstruction algorithm. 
 

Acknowledgments: This work was supported in part by NIH grant R01 HL48223 and Siemens Medical Solutions  
References: [1] Kholmovski EG, et al. ISMRM 2001, p. 786. [2] Gudbjartsson H, et al. MRM 1995; 34:910-914. 

Proc. Intl. Soc. Mag. Reson. Med. 14 (2006) 1949


