
Fig. 1. ALP Flowchart. 

Fig. 2. Twelve pairs of segmented WMHs versus FLAIR slices 
from one subject are shown. Left slice is the WMH result; right 
one is the associated FLAIR slice. 

Table 1: Volumes of WMH (mm3) per region for the ten subjects 
Reg\Sub 1 2 3 4 5 6 7 8 9 10 

cerebellum 
ant/post 

0 0 0 0 0 0 0 0 0 0 

frontal 2778 4 617 1026 387 1445 4771 12578 953 390 
limbic 748 0 548 197 77 577 3460 4402 117 44 

medulla 0 0 0 0 0 0 0 0 0 0 
midbrain 0 0 0 0 0 0 0 0 0 0 
occipital 2336 1982 861 2931 2599 1916 850 617 0 934 
parietal 416 0 11 33 73 456 767 3602 478 0 

pons 0 0 0 0 0 0 0 0 0 0 
subcortical 5785 197 11556 5077 2573 4201 26546 31689 1653 1825 
temporal 3734 124 1372 2150 584 1332 3011 9614 350 142 
left mask 5282 1566 11621 5599 3216 2781 19465 32127 2716 1683 

right mask 10654 807 7424 6238 3165 7384 20192 30266 847 2018 
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Introduction 
A number of previous studies have shown that white matter hyperintensities (WMH) are associated with neuropsychiatric disorders, including vascular dementia [1], 
Alzheimer’s disease [2], and late-onset late-life depression (LLD) [3]. These studies have primarily used a semi-quantitative rating system, in which trained expert 
raters visually grade the WMH using 4-point or 10-point scales. This method requires personal judgment, and it does not convey accurate information about the location 
or the volume of WMHs. A number of automatic or semi-automatic methods have been implemented for WMH segmentation in FLAIR images. In these methods, a 
lower intensity threshold is usually chosen for WMH segmentation, such as using 3.5 standard deviations of the intensity value of the normal WM [4]. To exclude the 
misclassified non-WMH voxels, Hirono [4] uses a manually outlined mask of WHMs with surrounding WM, GM and CSF, while Wen [5] uses a WM probability map 
(MNI 152 brains) to favor the most likely WM regions. Manually outlining the WMH mask [4] is labor-intensive, while the method used by Wen [5] makes WM 
segmentation accuracies rely on MNI to subject registration accuracies.  
Methods 
In the current study, we present an alternative method for WMH quantification and localization, which uses a 
fuzzy connected algorithm [6] to segment the WMHs and the Automated Labeling Pathway (ALP) to localize 
the WMHs into the anatomical space. This WMH segmentation method allows the user to choose multiple 
seeds from the scattered WMH clusters in a 3D FLAIR brain image (implemented in C++ using Fast Light 
ToolKit (FLTK), Insight Segmentation and Registration Toolkit (ITK))[7]. For each seed, the fuzzy connected 
algorithm uses different parameters to form a WMH cluster (containing the respective seed), and the system 
combines the scattered WMH clusters into the final WMH segmentation. This method avoids using a single 
cut-off threshold for the whole brain or a single slice of brain and potentially offers more precise WMH 
segmentation. Unlike in Hirono’s method [4], this semi-automatic method only involves WMH seed selection, 
which requires only a small amount of manual interaction.  ALP is used  (Fig. 1) to accurately localize the 
WMHs. This is an automated method we developed to automatically label specific anatomic regions of interest. 
In the current study, the standard Montreal Neurological Institute (MNI) brain Colin27, which carries high 
anatomical details and has a high spatial resolution (1mm3 voxel size), was used as the template; the 14 lobar 
regions and hemispheres identified in the Talairach Deaemon were chosen as anatomical atlas.   

Ten patient subjects (4 male; mean age 72.2, standard deviation ±5.57; all having LLD; mean 
Hamilton Depression Rating Scale19.8, standard deviation ± 6.18) were scanned using a 1.5 
Tesla Signa Scanner (GE Medical Systems, Milwaukee, WI). 3D structural MR images were 
acquired at sagittal orientation using 3D SPGR (TR/TE = 25/5 ms; flip angle = 40º; FOV = 
24×18cm, slice thickness = 1.5mm, matrix size = 256×192). And fast fluid-attenuated inversion 
recovery (fast FLAIR) images were acquired at axial orientation (TR/TE = 9002/56 ms Ef; TI = 
2200 ms; NEX = 1; FOV = 24 cm; slice thickness = 5 mm; slice gap = 1 mm; matrix size = 
192×256). A numerical rating for WMH was assigned by comparison of each subject's imaging 
data to predefined visual standards using a 10-point scale. For each FLAIR scan WMH ratings 
were made by two independent raters. If the ratings differed by one point, the final rating was the 
mean of the two values. A difference greater than one point between raters was considered as a 
disagreement, and was adjudicated by consensus. 
Results 
WMH segmentation Evaluation: The WMH segmentation results of 10 subjects using this semi-
automated method were statistically significant compared to the manual grading of WMH visual 
ratings. The comparison was done both with a linear regression model and the correlation coefficient. The normalized automated WMH segmentation results were 
found to be significantly correlated to the visual grades with a high R-squared = 0.822, F(1,9) = 37.0, p = 0.0003, and a high correlation coefficient at 0.907. The high 
correlation between the semi-automated results and the visual grades demonstrates that this semi-automated method can segment the WMHs successfully. The WMH 
segmentation result of one subject is displayed in Fig. 2, showing this method’s effective segmentation of WMHs.  
Localization of WMHs: Using ALP, the atlas in the MNI template Colin27 was transferred to the subject’s 3D SPGR image and further into the subject FLAIR image 
space, which were used as ROI masks to localize the WMHs. These WMH volume estimates describe the spatial distribution of the WMH burden.  From the table, we 
can see the WMHs occur primarily in the subcortical, frontal, and temporal areas. This is consistent with the observations in the literature of these areas being 
prominently affected in LLD. It should be noted in the table that there is considerable variability across subjects in the locations of the WMHs. For instance, half of the 
subjects have more WMH burden in the frontal versus temporal lobes and the other half have more WMH burden in the temporal lobe versus the frontal lobe. These 
differences raise the possibility that the locations of WMH 
burden could explain some of the variability in patients’ 
characteristics and treatment response.  
Conclusion 
Quantification and localization of WMHs is critical for 
research in the risk factors and pathogenesis of 
neuropsychiatric disorders. Most methods previously used 
were labor intensive, subjective, and provided little if any 
anatomic localization. The current method solves many of 
the previous limitations: it requires only a small amount of 
manual intervention, provides WMH volume estimates, and 
localizes the WMH burden to a number of anatomic ROIs, 
which will facilitate further, fine-grained understanding of 
the role of WMH in pathogenesis of neuropsychiatric 
disorders.  
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