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INTRODUCTION 
Fat distribution measurement on human is of great significance for a cluster of obesity-related diseases (such as diabetes, cardiovascular disease) generally referred to as 
metabolic syndrome. Also, monitoring the change of fat distribution longitudinally for patients with metabolic syndrome, after pharmaceutical intervention or life style 
change, is of great importance for improved drug development and disease treatment. Rapid and accurate fat quantification on MR images obtained in the human 
abdomen has been a challenge due to the poor contrast between fat and non-fat in traditional non-water-suppressed images. Therefore, rapid automated or semi-
automated fat quantification methods have difficulties achieving reliable fat volume measurement. Manual contour drawing still seems to be the most accepted 
approach for fat quantification, although it is slow, and suffers greatly from inter- and intra-observer variations. In addition, partial volume effects can not be accurately 
evaluated using a manual contour drawing method. Recently, a rapid MR fat imaging technique based on water-saturated balanced steady-state free precession (b-SSFP) 
has been proposed to generate high quality, fat-only images (1). It has been shown this technique can achieve high contrast between fat and non-fat, which has the 
propensity to make accurate and automated fat quantification possible.   
METHODS AND RESULTS 
1. Automated Fat Quantification Method 
Due to the limited spatial resolution of MRI, lipid tissue can be distributed in a full volume, and 
can co-exist with water and/or air tissue in the context of abdominal fat imaging. In an ideal 
water-suppressed image (neglecting residual water signal, noise, and other imaging 
imperfections such as B0 and B1 inhomogeneities), signal intensity from a voxel full of fat 
would generate maximum signal (Smax, with N1 pixels) in the image, and the signal intensity 
from a voxel partially filled with fat would be proportional to the volume ratio of fat in that 
pixel. Full volume voxels are mainly the static bulk fat, such as subcutaneous fat. Partial-
volume fat pixels are located mainly at fat tissue interfaces, and the lower signal can be due to 
partial volume fat filling, or to intestinal motion. Due to the complicated fat distribution and 
potential intestinal motion, the distribution of the partial-volume fat signal on a histogram is not 
predictable. However, if the number of pixels in an image is large enough (or imaging 
resolution is high), the probability that a given pixel has a signal intensity less than Smax is close 
to equal. Thus, a uniform (or rectangular) distribution with pixel density N2 can be used to 
approximate the partial-volume fat signal distribution, as shown in Fig. 1. Assuming a Gaussian 
noise distribution, N1, N2 can be obtained easily via curve fitting on the image histogram. 
Because on average, partial-volume voxels are half filled, a theoretical fat volume can be 
calculated as follows: Total Fat Volume (TFV) = (N1 +  N2*Smax/2) × Full Voxel Size. 
Therefore, a corresponding signal threshold which best separates fat and non-fat can be 
determined as: Sth = Smax/2. Fat volume can be determined as: TFV = (N1 + 
Sth × N2) × Full Voxel Size.  
2. Validation Method 
The same human abdominal phantom and 3D WS b-SSFP pulse sequence 
in (1) were used here. Briefly, the phantom had dual-layered concentric 
cylinders with known internal/external/total oil volumes of 
3.16L/6.34L/9.50L. Six datasets were obtained. A signal threshold 
(Thfp=Sth=Smax/2) was automatically determined for each image via curve 
fitting to separate fat voxels from background and other tissues. To 
compare this fat quantification method with a traditional method which 
includes mainly full-volume fat pixels, another threshold was determined to 
be Thfull=Smax-σ. Based on the binary fat-only images obtained by the two 
thresholds, internal-, external-, and total- oil volumes were calculated via 
ROI analyses. A single factor analysis of variance (Anova) was used to 
determine whether the two techniques predicted significantly different oil 
volumes. A P value of less than 0.05 was considered statistically significant.

  
 

3. 
Results 
 A representative phantom image obtained using the 3D WS b-SSFP sequence is demonstrated in Fig. 
2a. The corresponding histogram and the curve fitting result are illustrated in Fig. 2b. As shown 
earlier (1), water signal is effectively suppressed using WS b-SSFP, and the corresponding signal is 
close to the noise level centered at zero. Full-voxel fat signal distribution agrees well with a 
Gaussian-shape peak. Partial-voxel fat signal is between fat peak signal and zero, and a uniform 
distribution is obtained, consistent with the previous uniform distribution assumption for partial-
volume fat voxels. The phantom oil volume measurement results using two different threshold 
methods are shown in Tab. 1. It is shown that the two processing methods resulted in significantly 
different accuracies on phantom oil volume estimation. The Thfull method leads to a mean under-
estimation of 10.8% for IAF, and 4.8% for SAF. The Thfp method proposed herein which considered 
both full- and partial-volume fat generated much closer estimation of true oil volumes. The mean 
deviations of IAF and SAF oil volumes are only 0.1% and 2.6%, respectively.  

Discussion 
How fat distribution correlates with these diseases is still a very controversial subject. This is partially related to the limitations of currently available techniques, 
including both human fat distribution imaging method and fat quantification (post-processing) methods. The fat quantification method proposed here is verified to be 
fast and accurate on phantom. In vivo results are also consistent with the phantom results (not shown). This technique, in combination with the rapid 3D WS b-SSFP fat 
imaging method (1), can lead to much easier and more accurate fat quantification on human.  
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Tab. 1. Phantom Meas. Results (Vol. in % of true volume) 
Internal External Total Repeat 

Thfull Thfp Thfull Thfp Thfull Thfp 
1 89.6 100.0 95.4 102.5 93.4 101.6 
2 88.7 100.0 94.9 102.4 92.8 101.6 
3 89.7 99.2 95.0 102.6 93.3 101.5 
4 89.0 100.0 95.3 102.6 93.2 101.7 
5 89.7 100.2 95.3 102.4 93.4 101.7 
6 88.4 101.0 95.4 103.0 93.1 102.3 

Mean 89.2 100.1 95.2 102.6 93.2 101.7 
SD 0.5 0.6 0.2 0.2 0.2 0.3 
P <0.0001 <0.0001 <0.0001 
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Fig. 1. Theoretical and expected histogram of a fat image. Dashed 
lines show the theoretical histogram as predicted by the full- and 
partial-volume fat distribution model. Solid line shows the expected 
histogram of a water-saturated MR image, due to imaging noise, 
background artifacts, and residual water signal. N1: number of full 
fat voxels; N2: density of partial fat voxels; σ : FWHM of fat peak.  

 
 

(a) (b) 
Fig. 2. Representative phantom image and its histogram. The image in (a) was obtained using 
3D WS b-SSFP sequence on the human abdomen phantom. In the histogram plot (b), the
white curve represents the histogram of the image, and the green curve represents the result 
of curve fitting.  
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