Denoising of complex MRI data by wavelet-domain filtering: Application to high b-value diffusion weighted imaging
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Introduction
The recent interest in high b-value diffusion MRI, e.g. for g-space imaging, has emphasised the noise sensitivity of the acquired data [1]. At high b-
values the signal is influenced by the rectified noise floor in magnitude MR images, associated with the Rician noise distribution. Furthermore, noise
is a well-documented problem in the assessment of diffusion anisotropy by, for example, the fractional anisotropy (FA) index [1, 2]. In this study,
appropriate filtering in the wavelet domain [3] is proposed as a non-parametric tool for noise reduction in quantitative diffusion MRI.
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The real and imaginary parts of complex MRI data in the image domain (i.e. after Fourier transform of k-space data) were filtered, before
construction of the magnitude image. The filtering procedure is illustrated in Fig. 1 above. W denotes a wavelet transform and W ™' denotes an inverse
wavelet transform (different indices refer to the use of different wavelet families). The original signal is X = § + 1 (true signal plus noise) and
v =Wx, ©,=W,s, and z, =Wn,. H,, is a hard threshold filter that provides the initially filtered signal 5, =Wl" HW,x. The hard threshold filter is
given by Eq. 1:

by G, ) = {1, if ‘ y(@,j )‘ > po where y is the wavelet coefficient, p is an empiric threshold factor and o is standard

(Eq.1) deviation of the noise (determined from the finest-scale wavelet coefficients).

0, otherwise

Thereafter, a Wiener-like filter Hy, was constructed from the C:)21 =W, 3, data (being the best approximation to true signal at this point) and applied to
the hard-threshold filtered data. The Wiener-like filter is, in principle, given by Eq. 2. To achieve additional noise reduction, the estimated signal

‘é(' .)‘2 value §, (after the first Wiener-like filtering) was used to construct a new Wiener-like filter H ,y that was applied
i, ~
h, G, j)=— 2J (Egq.2) to the original noisy signal x, giving the final denoised estimate S . The above filter approach was applied to
‘9(1’ ) +o? simulated images (SNR=15 at b=0, 30 images with b-values 0 - 6000 s/mm?) as well as to experimental data.
Results
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Discussion

The described wavelet-based noise-reduction algorithm considerably reduced the noise floor as well as the standard deviation. A specific advantage
with the present approach, compared with previously proposed wavelet-domain filtering of the complex k-space data, is that image artefacts caused
by filtering-induced phase errors in k-space data are avoided.
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