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Introduction 
Mapping of relaxation times such as T1 and T2 generally involves the fitting of an exponential function to the evolution of the signal intensity in each 
pixel of a time series of images. The prevalent method employed for this purpose, the Levenberg-Marquardt method, pursues a non-linear least 
squares approach [1]. For applications that require a rapid mapping, its high computational complexity is a limiting factor, however. Other, faster 
methods have been devised, but they prove less accurate. For instance, a linear regression leads to an unstable estimation in the presence of noise, and 
a numerical integration to a systematic overestimation [2]. To decrease computational complexity while conserving accuracy, the present work sug-
gests to solve the non-linear regression problem by searching for a real root of a polynomial in a small interval, and it demonstrates this approach on 
T2

* mapping.  

Methods 
Let sk denote the samples of signal intensity taken at k∆t, where k = 0 ... N-1. The best fit of a monoexponential decay to this time series in a least 
squares sense is given by the minimum of the error function 
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For finite positive relaxation times, q is confined to the interval (0,1). Setting the partial 
derivatives of ε with respect to c and q to zero and eliminating c yields 
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Finding the best fit is thus reduced to searching for a real root of the polynomial p(q) in 
the interval (0,1). Among the various methods available for such a search [3], the New-
ton-Raphson method is one of the most efficient. It requires the evaluation of both p and 
its first derivate p′ for arbitrary q. The latter may be expressed as 
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In this way, the computation of p and p′ for one q essentially involves the calculation of 
p1, p2, and p3 only, which amounts to about 9N floating point calculations per iteration. 
An initial guess for q is, for instance, obtained from any two samples of the time series.  

Results 
Fig. 1 illustrates this approach for an ideal monoexponential decay with added noise. The 
corresponding p(q) shows exactly one real root in the interval (0,1). Starting with the 
inverse ratio of the first two samples, the deviation from the result of the Levenberg-Mar-
quardt method was less than 0.2% after only two iterations.  
The application of this approach to a series of 30 brain images, which were acquired with 
a multi-gradient echo sequence (∆TE = 1.9 ms), to map T2

* confirmed that a small num-
ber of iterations is sufficient to attain a high accuracy, even in the presence of significant 
noise. Fig. 2 shows the decrease in error with increasing number of iterations in this case, 
using again the results of the Levenberg-Marquardt method as reference. By comparison, 
the numerical integration approach yielded an error of about 10-1. 

Discussion 
The shape of p(q) in Fig. 1b was found to be typical. It suggests to preferably start with 
an overestimation of q to exploit the more rapid variation of p for higher q and to prevent 
a convergence towards q = 0. Such an overestimation is, among others, provided by the 
numerical integration approach.  

Conclusions 
The described root finding approach is applicable to the fitting of a monoexponential 
function to an equidistantly sampled time series of signal intensities. It achieves essen-
tially the same accuracy as the Levenberg-Marquardt method, but requires only a fraction 
of the calculations. Hence, it appears particularly suited for the real-time quantification of 
relaxation time changes. Whether this approach can be adapted to more complex models 
of relaxation remains to be investigated.  
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Fig. 1. a: Simulated input data (solid) and fitted expo-
nential decay (dashed). b: Corresponding polynomial 
p(q) with one real root in the interval (0,1).  
 

 

Fig. 2. Progression of the average relative error in the 
T2

* estimation as a function of the number of itera-
tions.  
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