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Introduction: Among the various parallel imaging reconstruction techniques available, autocalibrating methods such as GRAPPA have proven advantageous because 
they require no coil sensitivity estimation and exhibit relatively benign artifacts, especially at reduced fields-of-view [1,2]. Recently, many advances have improved 
upon the original published methods. Several authors have shown that the accuracy of autocalibrating techniques can be improved by using a 2D k-space kernel [3-5]; 
however, this improved accuracy comes at the expense of an increase in computation time.  It has also been shown that the advantages of a 2D k-space kernel can be 
realized by 1D kernels in hybrid (x, ky) space, where a unique 1D kernel is used at each x location [6]. Acquired data is transformed into hybrid space by applying a 1D 
Fourier Transform (FT) in the readout direction. However, finding the weights in hybrid space is computationally intensive. In addition, the computational advantage of 
transforming k-space kernel weights into image space and reconstructing the image in the image domain has been shown for 1D kernels [7]. 
    In this work, we calculate the most computationally efficient method of performing autocalibration reconstructions with a 2D kernel. We separate the reconstruction 
process into two steps: 1) a “training phase” in which the kernel weights are calculated, and 2) an “application phase” in which the kernel weights are applied to 
accelerated data, and we show that the most computationally efficient means of obtaining the accuracy of a 2D k-space kernel is to find the kernel weights in k-space 
and then apply the weights in either hybrid or image space, depending on the application. 
Theory & Methods: The determination of the kernel weights can be performed in either k-space or hybrid space, 
while the application of the kernel weights can be performed as a 2D convolution in k-space, a 1D convolution in 
hybrid space, or a point-by-point multiplication in image space.  The computation expense is calculated separately for 
each of these processing steps. First, the total number of complex-valued multiplications needed to find the weights in 
k-space vs. hybrid space is determined.  Second, the total number of complex-valued multiplications required to 
reconstruct accelerated data in k-space, image space, or hybrid space is calculated. In addition, the number of complex-
valued multiplications required to convert k-space weights to equivalent hybrid space and image space weights are 
calculated. 
Results: For the training phase, the number of weights used to fill in a missing data point in k-space is NcWxWy, where 
Nc is the number of coils and Wx and Wy are the kernel widths, as shown in Fig. 1. The most significant term in 
computing the weights in k-space requires Fk=Nf(NcWxWy)

2 complex-valued multiplications, where Nf is the number of fits performed in the calibration region. For Nx 
values in the readout direction, modeling the weights by a cosine basis in hybrid space requires an additional (Nx/Wx)Fk multiplications, making it significantly more 
expensive.   
    For the application phase, applying the weights in k-space requires Rk=NcWxWyNxNs complex-valued multiplications, where Ns is the number of phase encode lines 
that must be synthesized. With a 1D kernel in k-space, Rk/Wx multiplications are needed, while in image space only (Ny/Ns)Rk/(WxWy) multiplications are needed, where 
Ny is the total number of lines in the phase encode direction in the reconstructed image. The number of multiplications for converting the weights from k-space can also 
be expressed in terms of Rk, as shown in Fig. 2. 
    To get a sense of the magnitude of these numbers, we can plug the following reasonable values into the equations above: Wx=5, Wy=4, Nc=8, Nx=256, Ny=256, 
Ns=118, Nf=2000. In this case, calculating the weights in hybrid space requires about 50 times more computation than the equivalent operation in k-space. However, 
performing the application phase in hybrid space takes only 1/5th the computation as the equivalent operation in k-space. In this case, and in most cases, the computation 
to convert the weights from k-space to hybrid space is negligible. While removing the aliasing artifact in image space can be accomplished in about 1/9th the time 
required in k-space, the computation required to convert the weights to image space is not negligible, requiring nearly half as much time as it takes to simply apply the 
weights in k-space. Furthermore, removing the aliasing in image space requires a uniform k-space sampling density, a condition that can only be achieved with 
regularly undersampled data from which the calibration lines have been removed, resulting in reduced SNR and the inability to achieve flexible sampling patterns. 
Discussion & Conclusion: In all cases, the training phase is most efficiently performed in k-space. For the application phase, when aliasing artifacts need to be 
removed from only one image, it is computationally more efficient to apply the weights in hybrid space (Path #1 in Fig. 2). Performing this task in hybrid space also has 
the advantage over image space that the calibration lines do not need to be removed. Figure 3 provides a schematic for how Path #2 can be implemented in practice, 
using a simplified example with data from just 2 coils. In the case of time-series imaging, however, where the calibration lines are acquired once at the beginning of 
imaging and used to remove the aliasing artifacts on a number of subsequent images, then removing the aliasing artifacts in image space becomes the most attractive 
method from a computation standpoint (Path #2 in Fig. 2).  
    These results show that the autocalibrating reconstruction path should be tailored to the specific imaging application to minimize total reconstruction time. While this 
work examined 1D-accelerated parallel imaging implementations only, the conclusions also have important implications for 2D-accelerated parallel imaging 
reconstructions where the computation burden increases significantly. 
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Figure 1. 2D k-
space kernel used to 
find the weights to 
synthesize missing 
data at point “x”. Wx 
and Wy are the 
kernel widths in the 
ky and ky direction, 
respectively. 

Figure 2. Block diagram of the possible processing pathways to reconstruct 
autocalibrated data with a 2D kernel. The relative computational requirement for 
each step is indicated within each block. The most computationally efficient 
pathway for most applications is indicated by Path #1. Path #2 is also more 
efficient than a reconstruction performed entirely in k-space, but is less flexible 
and thus restricted in its applicability.  

 

Figure 3. Practical implementation of Path #1, using a simplified example 
with data from 2 coils. Kernel weights are determined from calibration lines 
in k-space, converted to hybrid space via 1D FT, and then applied to data 
that has also been transformed into hybrid space to synthesize missing lines. 
Performing another 1D FT on the reconstructed hybrid space data produces 
unaliased images on a per coil basis, which can then be combined (e.g. using 
sum-of-squares) to create the final image. 
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