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INTRODUCTION 
Existing parallel imaging methods are limited by a fundamental tradeoff, where suppressing background noise introduces aliasing artifacts.  Reconstructed data is 
further degraded by sensitivity errors due to physiological motion, coil misalignment and insufficient calibration lines. Current regularization techniques either impose 
minimum norm (1), or require a prior image mean estimate. The limitations of these regularization techniques are clear: regularized SENSE makes unrealistic 
assumptions about the image norm, while methods relying on a prior estimate (2) must be carefully registered to the target.  Use of such strong reference priors is 
vulnerable to errors in their estimation, leading to reconstruction artifacts. Tikhonov regularization (2) incorporates spatial information, but unfortunately assume that 
intensities are globally smooth, leading to excessive blurring of edges. We introduce an edge-preserving prior that instead assumes that intensities are piecewise smooth, 
and show how to efficiently compute its Bayesian estimate. Our prior model is quite general, and has very few parameters; hence little or no effort is required to find 
this prior, in contrast to image-based or temporal priors.  The estimation task is formulated as an optimization problem, which requires minimizing a non-convex 
objective function in a space with thousands of dimensions. As a result, traditional continuous minimization methods cannot be applied. However, our optimization 
problem is closely related to some problems in computer vision for which discrete optimization methods based on graph cuts have been developed in the last few years.  
We extend these algorithms to address our optimization problem, and call it EPIGRAM (Edge-Preserving Parallel Imaging with Graph Cut Minimization).   
 
METHOD 
For cartesian parallel imaging with acceleration by R, the N x M image X folds over into N/R x M aliased coil outputs Yl, and has a linear form y = Ex for vectors x and 
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class of edge-preserving smoothness penalties. The neighbourhood system Ns consists of pairs of adjacent pixels p and q. Neighbouring intensity differences within the 
threshold K are treated as noise and penalized accordingly by V(xp, xq), but larger differences are not further penalized since they most likely occur at edges.  This is 
very different from traditional convex L2 separation cost used in (1,2) which effectively forbids two adjacent pixels from having very different intensities. The aliasing 

pixels in X that contribute to pixel p  = (i, j) in Yl are defined by the aliasing set {( , '), [ ] [ ']}a p p p p= =N , where [ ]p  = (mod(i, N/R), j) .  It can be shown (3) that  
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for appropriately chosen functions b(p), c(p) and d(p,p’). Because of highly non-convex functions V(xp, xq), [1] cannot be easily minimized using traditional methods 
like conjugate gradients. Eq. [1] is in a form that was efficiently minimized in computer vision using a powerful discrete optimization technique called graph cuts (4). 
This technique converts the minimization [1] into a series of binary minimizations involving only a single intensity at a time. Thus, suppose X contains discrete 
intensities in the range [0,255]. The approach is to pick one value, say 0, and assign it to pixels in a way that minimizes [1].  Repeat this process for all intensities, and 
loop until [1] can no longer be reduced. These successive minimizations are efficiently performed by graph cuts by constructing a graph whose nodes correspond to 
image voxels and whose edges correspond to individual terms in the cost function [1]. Unfortunately, graph cuts can minimize functions like [1] only in the absence of 
cross terms involving d(p,p’); for our problem, we need to extend traditional graph cut algorithms. We do this by constructing an augmented graph where instead of 
representing each voxel by a single node, we use two nodes.  It can be shown that this new graph represents an objective function which is minimizable by graph cuts.   
 
RESULTS 
Fig 1 shows reconstruction of a central sagittal MPRAGE slice using an 8-channel head coil on a 4T Bruker /Siemens machine, with an undersampling factor R=4.  The 
sum of squares image is shown in (a), regularized SENSE with (empirically obtained optimal) µ  = 0.12 in (b), regularized SENSE with µ = 0.24 in (c) and EPIGRAM 
in (d). Considerable SNR improvement is observed in the EPIGRAM reconstruction, compared to both SENSE reconstructions.  Higher regularization in SENSE 
caused unacceptable residual aliasing, as observed by (c). Fig 2 shows similar results for an axial torso scan; SENSE was regularized with µ  = 0.16 in (b) and (e). 
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