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Introduction  This abstract shows that Persistent Angular Structure (PAS) MRI [1] is a special case of Spherical Deconvolution (SD) [2].  This 
observation allows us to a) construct a linear implementation of PAS-MRI and b) exploit the optimal non-linear representation of PAS-MRI for SD.  
We show some experiments comparing linear and non-linear PAS-MRI and SD. 
Methods  SD reconstruction assumes that the diffusion MRI signal A(q) is the convolution of the signal )ˆ;( xqR  from a single fibre with orientation 

x̂  with the fibre orientation distribution (FOD) f i.e. ∫= x̂)dˆ;()ˆ()( xqxq RfA .  SD attempts to recover this FOD by deconvolving the signal using a 

model for R.  If we represent the FOD using a linear basis so that ∑= =
K
k kkf 1 )ˆ()ˆ( xx ψβ  then deconvolution is linear [2,3].  PAS-MRI calculates the 

persistent angular structure (PAS), which is the function p~  of a sphere that when embedded in 3-space has the Fourier transform that best fits the 

measurements A(q1)…A(qN).  Thus ∫ ⋅= x̂)dˆ)cos(ˆ(p~)( 2 xqx rrqA , where r is the radius of the sphere on which p~  is embedded in 3-space.  This 

definition of p~  reveals that p~  comes from a deconvolution of the measurements using )cos()ˆ;( xqxq ⋅= − rrR 2 .  The original implementation of PAS-

MRI uses the maximum entropy parameterization ))ˆcos(()ˆ(~
10 ∑ ⋅+= =

N
j jj rp xqx λλ .  The parameters λj are calculated for each voxel by fitting p~  to 

the measurements using a Levenberg-Marquardt algorithm.  A non-linear implementation of SD (Maximum Entropy SD) can be obtained in a similar 

way [4].  The evaluation uses 12 synthetic datasets.  Each dataset uses a variation of the test function θθ RDxRDx ),;()1(),;( 21 tGataGp T−+= , 

where a is a mixing parameter, G(x;D,t) is a zero mean Gaussian with covariance 2tD, D1 = diag(λ1, λ2, λ2), D2 = diag(λ2, λ1, λ2) and Rθ is a rotation 
by θ about the z-axis.  We use each combination of λ2 ∈ {1,3,5}× 10-10 m2/s, a∈ {0.5,0.6} and θ∈ {0,22.5˚}.  Each dataset contains 256 sets of 
measurements with independent noise.  The data is synthesized by sampling the Fourier transform of p at each wavenumber in a spherical acquisition 
scheme with 54 gradient directions and b=1154 s mm-2.  Noise is added to the measurements as random complex numbers with independent real and 
imaginary parts drawn from N(0,α2), where α=F(0)/S, F is the Fourier transform of p at each 
wavenumber, S is the signal to noise ratio (SNR) at b=0.  We then take the modulus to get the 
synthetic measurement.  The data generated uses S=16, which is typical of diffusion MRI data.  To 
assess the performance of each algorithm, we compute the angle bias and direction concentration of 
the estimated fibre orientations for each dataset.  The angle bias (α) is the angle between the mean 
fibre-orientation estimate from the reconstruction and the actual fibre orientation.  The closer the 
angle bias is to zero the more accurate the estimate.  The direction concentration (γ), defined in [4], 
is inversly related to the variance of the fibre orientation estimates.  The average angle bias and 
average direction concentration were calculated by averaging α and γ over all 12 datasets.  The 
linear implementations of both algorithms were optimized by varying r ∈  [0.8,4], bd ∈  [0.8,40] 
and the width of the basis functions σ so that the average angle bias was minimised.  246 basis 
function centres were used for both of the linear methods, as suggested in [5].  For non-linear PAS-
MRI, the parameter r was set to 1.4.  MESD was set so that bd = 1. 
Results  There is a stable range of values of σ in which the performance varies little, both in terms 
of angle bias and direction concentration.  Figure 1 demonstrates this for linear PAS-MRI.  The 
optimal settings for linear PAS-MRI are r=4 and σ=50.  For linear SD, the optimal parameters are 
bd=4 and σ=40.  Figure 2 shows a full set of results for both the linear and non-linear 
implementations.  The non-linear results are for illustration only, since the non-linear methods have 
not been optimized. 
Discussion and Conclusions  The non-linear implementations of PAS-MRI and SD have a much better performance than the linear 
implementations in terms of the direction concentration.  In terms of the angle bias, the linear methods perform better for non-orthogonally crossing 
fibres.  However, the non-linear methods are far better at correctly estimating the number of fibre populations present in a voxel; they have fewer 
false positives than the linear implementations.  It is worth noting that the non-linear methods still need to be optimized with regard to the parameters 
bd (for SD) and r (for PAS-MRI).  Currently the non-linear methods are too computationally expensive, although improvements in hardware will 
overcome this problem. 
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PAS-MRI ( r=1.4)  MESD (bd=1) Lin PAS-MRI ( r=4, σ=50) Lin SD ( bd=4, σ=40) λ2/10-12 
(ms-2) 

A θ (degrees) 
Dir. Con Angle Bias Dir. Con Angle Bias Dir. Con Angle Bias Dir. Con Angle Bias 

100 0.5 22.5 2.5 10.4 5.5 9.2 2.9 1.3 3.2 0.9 
100 0.5 0 5.6 0.2 5.9 0.2 2.4 1.8 2.9 1.0 
100 0.6 22.5 3.4 9.0 5.2 12.6 2.5 2.1 2.8 0.8 
100 0.6 0 5.3 0.2 5.6 0.2 2.0 2.8 2.5 1.3 
300 0.5 22.5 3.7 1.9 4.0 10.0 1.6 4.6 1.9 3.4 
300 0.5 0 4.3 0.4 4.7 0.4 1.7 3.7 1.9 2.8 
300 0.6 22.5 3.7 3.6 3.8 13.2 1.7 1.9 1.9 1.0 
300 0.6 0 4.2 0.5 4.4 0.4 1.7 2.2 1.8 1.9 
500 0.5 22.5 1.8 9.8 2.0 15.1 1.3 7.7 1.4 14.6 
500 0.5 0 2.1 2.2 2.3 3.1 1.4 4.5 1.5 5.6 
500 0.6 22.5 1.6 12.8 1.9 15.2 0.6 14.5 1.4 6.0 
500 0.6 0 2.0 2.1 2.3 2.5 1.3 7.9 1.4 5.6 

Figure 2 – Results of 
both linear and non-
linear PAS-MRI and 
SD.  The linear 
implementations of 
these algorithms have 
been optimized. 

Figure 1 – Plots the average angle bias 
against σ for linear PAS-MRI (r=4) showing 
that there is a stable range of σ over which 
the performance varies little.   
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