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Introduction 
ICA is a statistical method for estimating a collection of unobservable signals from observations of their mixtures1. An explicit treatment of the noise in fMRI data 

using ICA is difficult primarily due to the complex structure of the noise. For example, noise studies with phantom data have shown that the Fourier spectrum has low 
frequency components with approximate 1/f dependence suggesting a low-order autoregressive structure. For better source estimation, it may be necessary to consider 
additive colored noise in the ICA model. Due to the complexity in dealing with noise, the application of a noisy ICA model has been neglected.  

We applied the concept of Gaussian Moments as introduced by Hyvärinen2,3 to remove the noise-induced asymptotic bias and computed a more accurate mixing 
matrix in the first stage of ICA. Furthermore, using parametric estimates of the sources densities, we used maximum likelihood estimation to determine the de-noised 
sources in a second ICA stage. 

Theory and Methods 
The noisy ICA linear mixing model for mean removed fMRI data can be described as xv=Asv+ηv  for v=1,…..,N where xv is the observed time course vector at 

voxel v with T components (time points), A is the T x p dimensional mixing matrix, sv is the signal vector (zero mean) with p components at voxel v, ηv is the noise 
vector that follows a multivariate Gaussian distribution with zero mean and covariance matrix Σ, and N is the number of voxels. To model the noise in fMRI data X, we 
use an AR(1) model and estimate the parameters σ2 and φ from the tail eigenvalue spectrum of the data covariance matrix. Because of the difficulty of working with the 
full dataset, we use PCA to reduce the dimension of the input to ICA by              where                               and E and Λ are the matrices of the major p 
eigenvectors and corresponding eigenvalues, respectively. The data, X, transform according to           where S=[s1…sN] and H=[η1…ηN] are the 
matrices of the sources and noises, respectively. The first step in doing ICA is to decorrelate the signals in the data using quasi-whitening leading to an orthonormal 
mixing matrix of the sources (provided the sources are variance normalized), and a new noise covariance matrix Ξ  given by 
   
 
Then, a variant of the FastICA algorithm2 is used for determining the unmixing vectors wi (weights): 
 
       for i=1,…,p     

where wi* is the updated value of wi and g is a chosen contrast function approximating the logarithmic derivative of the source densities. In order to de-noise 
the sources in a second ICA stage, we use maximum likelihood estimation leading to the equation 

 

In this equation g is a vector describing the value of the nonlinearities g for each of the p sources )1(
vs … )( p

vs  at voxel v. Since in the general case, the source densities 

cannot be expected to be similar, each source will have a different nonlinearity g. This vector-valued equation is solved iteratively for all realizations of voxels. A 
complication is provided by the fact that the probability densities of the sources and thus the corresponding nonlinearities g need to be estimated as well. Since data in 
fMRI are often skew symmetric4, the nonlinearities g are estimated based on modeling the source probability densities by an asymmetric exponential family of the form 

 ||)()( 2

)( δβγβα +−+−= ssCesp with parameters α, β, γ, δ to be optimized.  

 
Results and Conclusion 

Figure 1 shows an example of an asymmetric pdf extracted from real fMRI data and subsequent computation of the nonlinearity using above parameterization. For 
comparison, the cumulative density function is also shown. Figure 2 shows the accuracy of an estimated source obtained by conventional ICA (blue) and noisy ICA 
(black) applied to simulated data (30 mixed supergaussian sources from a general exponential distribution with α=0.3 and additive AR(1) noise with φ=0.2, 20000 
voxels, 300 time frames). Each scatter point corresponds to a voxel. Figure 3 shows the performance of noisy ICA for pseudo-real data as a function of the amplitude c 
of the added source component. Data used were resting-state data plus a single supergaussian source reflecting a typical fMRI pattern (bilateral motor activation) with 
strength c was added. The corresponding time course was a Gaussian-convolved boxcar function (periodicity 20 time frames off, 20 time frames on), simulating a 
typical HRF time course in fMRI. Source accuracy was determined by calculating the correlation coefficient of the extracted source component and original source 
component (corresponding to the bilateral motor activation). Time course accuracy was determined by calculating the correlation coefficient of the corresponding time 
courses.   
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