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Nonparametric mixture modeling for mapping of brain activation using functional MRI data 
 

R. R. Nandy1, D. Cordes2 
1Psychology, University of California, Los Angeles, California, United States, 2Radiology, University of Washington, Seattle, Washington, United States 

Introduction 
In conventional hypothesis based fMRI analysis, usually the analysis is based purely on the null hypothesis. It is difficult to construct a specific alternate 

hypothesis and the distribution of the test statistic under the alternate hypothesis is usually difficult to compute since the activation level is unknown and need not be the 
same for all voxels. To address this problem, Everitt and Bullmore [1] have used a simple test statistic and a simple alternate hypothesis for which the distribution of the 
test statistic under the alternate hypothesis can be evaluated parametrically with the use of two parameters estimated from the data using maximum likelihood estimates. 
The fitted distributions of the test statistic under null and alternate hypotheses were then used in a mixture model to construct activation maps. This method has been 
further extended by Hartvig and Jensen [2] to account for spatial coherence in fMRI data. However, in both of these methods, it is necessary to make several 
assumptions, some of which are questionable. Instead, in this abstract, a nonparametric mixture model is introduced which make minimal assumptions whose validity 
are not in question. Furthermore, the proposed nonparametric method can easily extend to multivariate statistical methods, such as canonical correlation analysis (CCA) 
to take into account the spatial coherence without making any explicit assumption about the spatial structure in the data. 
Methods 
Formulation of the nonparametric mixture model - The nonparametric mixture model can be formulated in a very general framework with minimal assumptions. We 
assume that in the event of no activation in the brain related to the active task of interest, the inactive voxels can be classified into k homogeneous groups and the null 
density functions of the test statistic in these groups are denoted by f1(x),….,fk(x), respectively. The proportions of voxels in these groups are denoted by p1,….,pk, 
respectively. A similar formulation is made for the distributions of the test statistic under the hypothesis of activation. Again, the active voxels can be classified into l 
homogeneous groups and the corresponding density functions and proportions are denoted by g1(x),….,gk(x)  and q1,….,qk, respectively.  

 
Clearly, the null and activation density functions for a random voxel can be expressed as                   and                                 respectively. Then in  
 

activation data, the mixture density function can be expressed as                            ,                                                                   where β is the proportion of non-activated 
voxels in the active brain.                                                   

Let An denote the indicator function at voxel n, where An=1 corresponds to the event that the voxel is active and vice versa. We want to estimate the posterior 
probability of the voxel being active given the observed sample for the activation data. A simple calculation yields the following expression for the posterior probability 
of activation at voxel n:  

 
 
 
 
Estimation of f, g and h - For the estimation process, it is necessary to acquire an additional set of resting state data with identical scanner protocol as in activation data. 
Since the resting-state data are not related to the paradigm used in the activation data, the resting-state data may be considered to be null relative to the paradigm of 
interest. The estimated empirical density function from the combined resting state data provides a direct estimate of f(x). Furthermore, the activation data that we 
observe is already the mixed data and the estimated empirical density function from the activation data directly provides an estimate of h(x). However, to obtain the 
estimates of the posterior probabilities, it is necessary to have an estimate of g(x), which can be estimated from the above equation provided we can estimate β. β can be 
estimated using a method based on false positive fraction (FPF). For a fixed value of the test statistic, the corresponding FPF is calculated from the resting-state data. 
The FPF gives us an estimate of the number of voxels expected to be detected by error. Suppose the total number of voxels is N and m is the number of voxels detected 
to be active for a threshold α. It can be shown that a lower bound for β is                 . The best estimate is obtained when the estimate attains the peak to take the 
maximum value. 
 
Estimating the power of a test in the hypothesis based approach in fMRI - As mentioned previously, one of the weaknesses of the usual parametric hypothesis based 
formulation in fMRI data analysis is the absence of a proper alternate hypothesis which is specific. In effect, it is not possible to estimate the power of the statistical test 
in this parametric formulation. However, the ideas involved in the nonparametric mixture modeling can be used to estimate the power. In this setup the distribution of 
the test statistic under alternate hypothesis of activation is simply g(x). Since we have already described the process to estimate g(x), estimation of power for any chosen 
threshold is trivial. 
Results 

Due to space limitation, we only provide a simple simulation result for a single 100×100 slice. The preselected active voxels with activation levels are shown in 
Figure 1. The observed values of the F-statistic at these voxels after adding noise are shown in Figure 2. We also simulated a 100×100 slice with pure noise (equivalent 
to resting state for real data), which is used to estimate f(x). In Figure 3, we present the map for posterior probabilities on the same slice, which nicely indicate the active 
voxels. Observe that the active voxels are much easier to identify with this map compared to Figure 2. Exactly the same procedure is implemented for activation data. 
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Figures 1-3 
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