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Introduction We present an efficient least squares method for the reconstruction of magnetic resonance images from data sampled 
non-uniformly in k-space. The procedure can be applied to arbitrary trajectories. It is based on two fast algorithms, the non-uniform fast 
Fourier transform (NUFFT) [1�3] and the fast sinc transform [4], combined with analytic weights [5], and an iterative procedure. 
Theory and Numerical Experiments The pseudo-inverse formulation of the image reconstruction problem was presented in [6]. The 
forward model given by the MR signal equation is a continuous to discrete mapping from ρ(x) to the set of N measurements {s(k)}.  The 
pseudo-inverse reconstruction is given by ρ(x) = Σn e-2πikn�x (M+)nmsm, where the NxN matrix M has elements Mmn= sinc(kn-km), that is 
one first solves the linear system s=Ma, and then one computes the fourier sum. The fourier sum can be computed quickly using the 
NUFFT. The linear system can be solved by a) inverting M using the SVD, an expensive procedure requiring O(N3) operations, or b) an 
iterative method such as conjugate gradient [7].  In [5] it was shown that the matrix M can be applied quickly using the fast sinc 
transform.  It was also shown in [5] that an approximate inverse of M could be formed as a diagonal matrix W given by the optimal 
density compensation weights wn = Σm (1/sinc2(kn-km)), and computable quickly using the fast sinc2 transform. Here, we combine these 
tools to construct a fixed point type iterative method to solve the linear system s=Ma.  At each iteration the signal is estimated by 
applying M to a using the fast sinc transform, and a is updated by multiplying the residual signal by the weights. 
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Simulations were carried out in MATLAB and FORTRAN. Synthetic data were generated from the analytic FT of the Shepp-Logan 
phantom [6] on several k-space trajectories. For the samples at integers (column 1), the sinc matrix is equal to the identity and inversion 
is trivial.  For the two archimedian spirals in columns 2 and 3  (4096 points, Kmax=64), the linear system s=Ma was solved using the 
either fixed point or conjugate gradient iteration. On a 1.2GHz laptop computer, each application of the sinc matrix required 0.19s. The 
total time for 5 iterations of sinc followed by NUFFT is ~1.5s. 
Gibbs Ringing: A small amount of Gibbs ringing is observed in the reconstructed images due to the truncation of the sampling in the 
fourier domain. Kmax = 64. This is a property of any least-squares type reconstruction. 
Spiral Artifact: The artifact in column 2 is a result of insufficient sampling at high frequency; it disappears when the spacing between the 
spiral turns is reduced slightly (not shown).  We note that even with optimal reconstruction, some trajectories are better than others. 
Noise and CG: If none of the sampling points are repeated, the matrix M is invertible, although it may be badly conditioned and 
conjugate gradient based linear solvers are potentially unstable [7]. A small amount of noise was added to the signal (same as column 
3). The linear system s=Ma was solved and the log of the relative residual error as a function of iteration number was plotted in column 
4  (CG: solid line, new method: line with dots).  The ill-conditioned nature of the linear system becomes apparent when using conjugate 
gradient in the presence of even a small amount of noise (SNR~30). Our method does not suffer from this instability. 
Summary We have shown that the combination of the NUFFT, the fast sinc transform, and optimal weights provides a robust iterative 
linear solver for the reconstruction of MR images from arbitrarily sampled k-space trajectories. This procedure is likely to be of value in 
a variety of fast imaging applications, such as functional or cardiac MR imaging. 
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