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Introduction 
Magnetic resonance (MR) imaging usually reconstructs images from completely sampled but finite-sized k-spaces using the inverse Fourier trans-
form (iFT)[1]. However, iFT on finite-size k-spaces introduces Gibbs ringing artifacts and degrades resolutions in the reconstructed images [2]. 
Moreover, real-time 3D MR imaging sometimes requires acquisition of a sparsely sampled k-space dataset [3]. For example, in continuously moving-
table contrast-enhanced MR angiography sparse sampling is a necessity to ensure tracking of the contrast bolus. With sparse sampling, only a portion 
of the phase-encoded plane is sampled (with acquisition typically of the central region favored over the periphery). Autoregressive moving-average 
(ARMA) methods have been shown to extrapolate data beyond finite-sized k-space datasets [4], and may be of use when reconstructing sparsely 
sampled 3D k-space data. Our hypothesis is that ARMA methods have the ability to recover missing data and thus generate images with improved 
resolution and reduced artifact, compared to zero-filling algorithms (ZF; c.f., Ref [5]). 
Theory 
The ARMA method is a parametric approach that can be used to model (characterize) a finite-length data sequence. In signal processing terms, the 
measured k-space data are regarded as a subset of the transient response of an infinite impulse response (IIR) filter excited by excitation pulses. Data 
points, Sn, can be modeled and expressed as a linear combination of their previous values, Sn-m (1≤m≤ p), and the excitation, en-h (1≤h≤ q), i.e., Sn =  
-∑ am Sn-m + ∑ bhen-h, where p and q are the autoregressive and moving-average filter orders, respectively. Of the algorithms used to successfully 
implement the ARMA method, the Transient Error Reconstruction Approach (TERA) is of particular interest [4]. We have extended the regular 
TERA algorithm (rTERA) into a new method where the image phase is used as a constraint, i.e., constrained-phase TERA algorithm (CP-TERA). 
However, because it is not possible to obtain the true image phase Φ0(r), image phase from the central zone of k-space Φc(r) could be used as an es-
timate of the true phase: Φ0(r) contains mostly low spatial frequency components and thus Φc(r) can be considered as a good representation of Φ0(r). 
After parameters am, bh and e are determined from the measured MR data and the constraints, missing data would be recovered and the image func-
tion can be calculated explicitly.  
Method 
Raw data from a quality-control phantom were acquired on a clinical 3 T scanner (Signa; General Electric Healthcare, Waukesha, WI). Hybrid k-
space data (x-ky-kz with Nx = 256, Ny = 256 and Nz = 64) were produced by taking the iFT of each readout (i.e., in the x-direction) immediately after 
acquisition and then placing them into the appropriate location in the hybrid space. A series of simulated sparsely sampled k-spaces were generated 
(MATLAB, version 6.5.0, R13; Mathworks, Natick, MA) with constant central zone ratio α (defined as α = Ncentral / No, where Ncentral and No are the 
number of pixels in the central zone and in the full phase-encoded plane, respectively) and varying the sparsely sampled density β (defined as β = 
Nacq/(No - Ncentral), where Nacq is the number of points in peripheral region). Images were reconstructed from the fully sampled hybrid k-space (i.e., the 
true image I0) and from simulated sparsely sampled k-spaces using (a) ZF (IZF), (b) rTERA (IrTERA) and (c) CP-TERA (ICP-TERA). The ZF method 
replaces the missing k-space data with zeros. The quality of the 
resulting images was assessed by visual inspection and quantified 
by calculation of performance error (PE) defined as PE = 

(ζ i − oi)
2∑ oi

2∑  where ζ i  and oi  denote pixels from ITERA (or IZF) 

and I0, respectively. The PE summation was performed over all 
pixels in the image (global performance error, GPE) and over all 3 × 
3 kernels in a small high-frequency region (local performance error, 
LPE). 
Results 
Both TERA approaches produced images that were qualitatively and 
quantitatively superior to those obtained by ZF. CP-TERA was bet-
ter able to recover the missing k-space data points than rTERA (Figs 
1d vs 1c). Hence, CP-TERA (Fig 1h) showed better image recon-
struction performance than both ZF (Fig 1f) and rTERA (Fig 1g). 
Global and local PE (GPE, LPE) for CP-TERA images (Fig 2) were 
smaller than those when using ZF and rTERA, indicating superior 
image reconstruction performance with sparsely sampled k-space by 
our proposed algorithm. 
Discussion 
Compared with the more simple and commonly used ZF reconstruc-
tion and with the rTERA, CP-TERA is a better technique to recon-
struct images from sparsely sampled k-space, as it results in good 
image quality and reduced global and local PE. This is an interest-
ing finding demonstrating that TERA successfully interpolates the 
missing data. Optimization of CP-TERA to achieve computational 
efficiency is our next step. 
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Fig 1: 2D representation of 3D k-space datasets and the corresponding re-
constructed images. (a) Completely sampled k-space and (e) the reference 
image; (b) Sparsely sampled k-space with α = 6.25% and β = 30, and (f) ZF 
image, (c) partially recovered k-space and (g) the corresponding image by 
rTERA and (d) partially recovered k-space and (h) the corresponding image 
by CP-TERA. Yellow outlined region in (e) used for local performance error 
calculation. 

 
Fig 2: Global (a) and local (b) performance error (PE) versus β (using α = 
6.25%) for ZF, rTERA and CP-TERA images. Local PE is defined over the 
yellow region shown in Fig 1e in order to highlight ability to reproduce high-
frequency structures. 
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