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Introduction. The standard Singular Value Decomposition (SVD) is one of the main tools to study classical DT-MRI data, when they are 
represented as symmetric, positive definite tensors of order 2. Much current research in diffusion MR, however, is directed towards Higher 
Angular Resolution Diffusion Images (HARDI) data, that can be modeled in a number of different ways, e.g. as multi-exponential [1] or a 
natural generalization as Higher Order Tensor (e.g. [2]) to take account of multiple fibre directions within individual voxels. In this context, 
a generalization of SVD to such data would appear highly desirable, and such generalizations, called Higher Order SVD (HOSVD) 
although not commonly used, do exist [3]. Thus, our aim here is to introduce and investigate the usefulness of HOSVDs in HARDI, and 
describe mathematically the transition from 2nd order tensor to higher data. 

Theory-Methods. Multiexponentials: Physically, a voxel can contain multiple contributions to diffusion due to partial volume effect. 
The most straightforward description of the measured signal for a given diffusion gradient orientation g is to assume that it is a linear 
combination of the signals from individual Gaussian diffusion [1]. This leads to a multi-exponential description of the signal: s(g)/s0 =f 
exp(-bgtD1g) + (1-f)exp(-bgtD2g). The factors f and 1-f measure the size of each contribution; b-factors encode the amount of diffusion 
weighting. As a first theoretical result, this signal is asymptotically weighted average of the tensors (this can be seen from a Taylor 
expansion in b):   

log(s(g)/s0) ≈ -b gtDg ≈ -bgt (fD1 + (1-f)D2)g + (higher order terms),                                                  (1) 
The fibre direction is extracted as the principal eigendirection of the tensor D. When b becomes larger, the expansion to second order 
becomes inaccurate, and higher order (even) terms, of at least 4th order have to be considered (expressions of the type Dijkl). This turns out 
to have a surprisingly simple expression for two compartments: the coefficient of b2 in the Taylor expansion, i.e., the 

4th order tensorial term in (1)  ≈   f(1-f)(gt(D1 – D2)g)2 .                                                                (2) 
4th Order Stejskal-Tanner: An alternative view is the one proposed in [2], where instead of treating s(g) as a multi-exponential, it is 
viewed directly as an exponential of higher order tensors, log(s(g)/s0) ~ -b Dijkl gi gj gk gl (summation over repeated coordinate indices, this 
is eq. (11) in [2]). Thus, in both cases tensors of at least 4th order are needed. 
HOSVD: Standard SVDs can be described as a decomposition of the tensor in a weighted sum of rank 1 terms (dyadic products). Two 
generalizations of this interpretation of the SVD to expressions of the form Dijkl are available: the PARAFAC and Tucker-HOSVD (see [3] 
for details). As a simulation, we construct a pure ‘crossing’ situation of two tensors D1 and D2 with orthogonal principal directions forming 
an angle of 90° (arbitrary non-principal directions, both with FA= 0.86, f=0.75). 

Results. Multi-exponential view: Figure 1a shows  the relative differences  |log(s(g)/s0)–(2nd order term)|/|log(s(g)/s0)|, and  
|log(s(g)/s0) –(2nd and 4th order terms)|/|log(s(g/s0))|, as a function of b, where g is taken among 30 icosahedral directions . Fig.1a, without 
added noise, Fig.1b, with a b-dependent SNR corresponding to fixed std of the noise (fixed SNR from 100 at b=0 to 45 at b=5000). The 
unrealistically high SNR is chosen to ease visualisation in the graphs; the effect is similar but more marked at lower SNRs. 
4th order Stejskal-Tanner: We construct a 4th order tensor as the tensor product (Kronecker, dyadic)  D1× D2 to which we add 
increasing amounts of random error up to 10% of the size of the tensor (horizontal axis in Fig.2). We then compute the error of the 
directions found by the HOSVD with the original directions, (Fig. 2, vertical axis) as the sum of the norms of the cross-product between 
directions (unit vectors, thus the norm is the sine of the angle, approx. the angle in radians for small values) found by HOSVD and the 
gold-standard. This quantity is zero for perfect alignment. The two HOSVDs give identical results for this case.  

Discussion: At ‘low’ b-values, the 2nd order tensor corresponding to a mixture 
of signals is asymptotically the averaged tensor, with good approximation up to 
b~1000 without noise, but the noise dominates at very low b-values (cf. Fig 1b). 
Note that from the point of view of this approximation, values around b=1000 are 
nearly optimal (which agrees with [4]); any method which attempts to extract 
multiple directions for low b-values does it from the discrepancy between fitted 
and predicted in Fig1a-b. This is considerably improved by the correct 4th order 
fit for a multi-exponential. For higher b-values, the HOSVDs could provide a 
simple and efficient way to extract the tensor direction from a tensor, provided the 
tensor expresses multiple directions in the way described by the 4th order Stejskal-
Tanner equation, i.e., the approach in [2] rather than multi-exponentials. Note that 
to apply the HOSVD to a multiexponential directly, we would need to extract the 
crossing term D1D2 from the (symmetric) tensor product of D1-D2 with itself, this 
is D1

2 + D2
2 -2D1D2 thus is a mixture. 
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