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Introduction. Motion correction in MR has gone from being limited to 1D, or at best rigid motions to much more 
complicated non-rigid corrections [1]. This is achieved by building an implicit linear system whose unknown is the non-
ghosted image, and whose known is the ghosted one. This, however, requires knowledge of the inverse of the spatial 
transform. Here we discuss a method to address this issue by constructing explicitly a sparse system for the unknown image, 
whose right hand-side is the motion-ghosted image, and whose sparse matrix can be identified with the collection of space-
variant Point Spread Functions (PSF). We make the assumption that motions occur between shots, in a multishot context, 
where each shot is a set of regularly spaced lines.  The motion is assumed measured in some way, which is  possible ([3,4,5]). 
Theory and Methods. Rotation in image space corresponds to rotation in k-space. This statement cannot be generalized to 
nonlinear motions, and is not sufficient to deal with motion happening during acquisition. If this motion can be modeled, it 
has been shown that it is possible to solve the ghosting equation, thus correct even nonlinear motion [1]. The main equation 
states that the motion ghosted image can be written as s=(∑t atut)s0 =: γs0 where at is the t-th aliasing matrix representing the 

aliasing corresponding to the sub-sampling at time t, and ut is a linear 
operator representing motion on the space of images. Thus, the 
operator γ is a linear operator and one can in theory solve for s0.This, 
however, assumes that the motion is known, and that we can perform 
the multiplication in reasonable times. Note that as γ operates on the 
space of images (e.g. N=256D-dim. in D dims), such a matrix would 
require a huge N2 storage, which is unrealistic. This was solved in [1] 
by --implementing  the product with γ with the help of standard FFT 
and sub-sampling to get a matrix-vector product function which 
could be fed into a Conjugate Gradient of Normal equation (CGNE) 
algorithm (LSQR) --optimizing over all possible motions in a motion 
model. This, however, raises a difficulty. Because the CGNE 
requires multiplication with the transpose, one needs to transpose the 
operation corresponding to spatial transforms, which amounts to 
inverting the spatial transform. This limits considerably the space of 

potential non-rigid transforms, as for most of them the inverse is unknown. Here we solve this issue by, instead of using a 
matrix-vector form, building explicitly a sparse NxN matrix γsp, whose columns can be interpreted as the space-variant PSFs 
for the N pixels. The sparseness is controlled by a threshold parameter, i.e., a matrix element is kept if its magnitude is higher 
than the threshold. In this way, the transposition operation is just a standard matrix operation, and non-rigid motions, whose 
inverse is unknown, such as typical spline-based deformation, can be used practically. Note that γsp also depends on the 
interpolation method, which allows further trade-offs between speed, (sparseness) and error. 
Results. The graphs in Fig. 1 show the computation times and relative errors for a simulated spline deformation (computed 
from a 32x32 image), for sparseness threshold from 0.001 to 0.01. Figure 2 shows a higher resolution simulation, where a 
128x128 image s0 (Fig. 2-a) is subjected to a shot dependent spline deformation (Fig. 2-b shows deformation at shot 2), here 
in 8 shots, producing the ghosted image s (Fig. 2-c). The sparse matrix γsp is constructed for a threshold of 0.0001, and 
a corrected image is constructed by solving the equation s = γsps0  (Fig. 2-d) (total computation time ~90mins).  

 

 
Conclusion-Discussion.  We have shown that ghosts due to general types of (known) motion, whose inverse is not even 
known, can be fully corrected, in a Cartesian multi-shot context. This could be used by for example using information from 
navigators or statistical deformation models [3,4,5] to find what motion occurred, and to apply this correction directly to the 
ghosted images. The sparse matrix point of view puts this work in the context of �space-variant PSF� [2].  Figure 1 shows 
what the associated cost of the sparse matrix version is, and how the errors grow with sparseness threshold (a good choice of 
threshold will depend on image resolution, magnitude of data, and other factors such as interpolation). There is a limiting 
value above which the errors become too large, and not much time is gained, but this method allows extremely general types 
of motion, which would compensate for such limitations.  
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