
Fig1:  RBFNN for quantification of peaks 

 

 

 

 

Amplitude 

Proportion of 
Lorentzian 

Linewidth 

Input  Hidden Layer 

 Fig 2: Estimation without (left) and with (right) overlap 
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INTRODUCTION: Accurate quantification of the MRSI-observed regional distribution of metabolites involves relatively long processing times.  This is particularly 
true in dealing with large amount of data that is typically involved in multi-center clinical studies.  To significantly shorten the processing time, we have implemented 
an Artificial Neural Network (ANN) based approach to quantify phase corrected (as opposed to magnitude) spectra. This method was tested on simulated and normal 
human brain data. The metabolite area ratios for normal subject data were compared with line fitting 
(LF) method and published values.  
 
METHODS: Data acquisition: Two-dimensional MRSI was acquired on a 3 T Philips Intera scanner 
using the PRESS localization and 24x24 phase encoding steps. The sequence parameters were TR = 
1500ms and TE = 39ms, spectral width = 2000 Hz, number of points = 1024, and slab thickness = 12 
mm. Unsuppressed water spectra with identical sequence parameters except for 12x12 phase encoding 
steps were acquired for automatic phase correction and inter-voxel spectral alignment.  
Preprocessing: Spectral preprocessing and phase correction were performed as suggested in [1 & 2]. 
The spectra were corrected for B0 inhomogeneity using water reference deconvolution [3]. A Wiener 
filter approach was developed and implemented to make the deconvolution procedure more effective in 
the presence of varying amount of noise in the spectrum. Particularly at low TE, the baseline removal 
is a crucial step for accurate quantification, due to the presence of broad macromolecular resonances. 
Baseline correction was implemented as a preprocessing step, using Wavelet shrinkage [4].  
Quantitation: Radial basis function neural networks (RBFNN) were used for the spectral quantitation.  
RBFNN (Fig. 1) were preferred over the Multilayer Perceptron (MLP) due to their faster training 
speeds.  The normalized peak of interest, which is automatically identified from the input spectrum 
based on apriori information about position and local gradient information, is given as input to the 
network. The network outputs are the amplitude, linewidth and proportion of Lorentzian in the peak. 
These parameters are used in computing the area under the peak. The networks were trained with 
simulated data sets using the Voigt lineshape (linear combination of Lorentzian and Gaussian). 
Following parameter variations were used in training: i) Full width at half maximum (FWHM): 
1.9531– 13.6719 Hz; ii) proportion of Lorentzian: 0-1; iii) Amplitude: 0 -1.5.  Gaussian noise 
equivalent to 3% of the maximum signal amplitude was added to the input peaks, to make the 
networks more robust. The basis functions were selected by training a Gaussian mixture model for the 
input data set with the Expectation Maximization algorithm [5].  The optimal number of basis 
functions was set using an early stoppage criterion.  Since the peaks are identified locally in each 
spectrum, there is no apriori information about the length of input vector to the RBFNN. To take care 
of this problem, multiple RBFNN’s with wide range of input vector lengths were trained. The RBFNN 
with input vector length closest to identified peak is automatically chosen for quantification. Separate 
RBFNN’s were trained to account for the overlapping peaks, as shown in Fig 2. This step significantly 
improved the accuracy of estimation of the peak parameters for Cr and Cho.  
 
RESULTS AND DISCUSSIONS:  Simulations with noise and phase distortion were performed to 
test the robustness of the networks. Noise was varied from 0-10 % of the maximum signal amplitude 
and phase was varied from 0-45 degrees. Fig. 5 shows the correlation coefficient between actual area 
under the peak without noise and phase distortion and the areas computed from the parameters 
estimated by the RBFNN approach. The correlation coefficient is very close to 1 for no noise and no 
phase distortions and reduces to about 0.85 for 10% noise and 45 degrees phase distortion in the input 
peaks. This shows that the RBFNN quantification approach is very robust to noise and phase 
distortions.  The RBFNN quantification method was tested on data from 7 normal controls (NC). Fig. 
3(a) shows a sample spectrum after B0 correction (solid) and the estimated baseline (dotted). The 
NAA, Cr and Cho peaks were quantified by the RBFNN approach and the result is shown in Fig 3(b). 
The difference between the actual and estimated peaks is shown in Fig 3(c). The results were 
compared with quantification based on the LF approach [2]. The average area ratios - NAA/Cr and 
Cho/Cr obtained by both these methods are shown in Table 1 and the differences in the ratios using 
these two methods were found to be statistically insignificant.  These ratios were also comparable to 
ones reported in literature at 3T field strength.  Fig. 4 shows the metabolite map for NAA based on 
area values computed from the RBFNN analysis, overlaid on the corresponding high resolution image. 
Only those voxels which are fully within this VOI were included in the quantification procedure. 
 
CONCLUSION:  An accurate, robust, automatic and fast method for quantification of MRSI data 
based on RBFNN is presented. This is the first study to use ANN for quantitation of phased spectra as 
opposed to magnitude spectra. Results show that this method is comparable to the LF method. The 
computational time on a typical PC was around 15-20 seconds compared to 30-40 minutes for line 
fitting methods. This method is amenable to implementation in parallel computing environment, 
reducing the time even further and making real time analysis practical.  
 
ACKNOWLEDGEMENT: This work was supported by NIH grant number EB02095.  
 
REFERENCES: [1] Doyle T. J. et al. JMR B106: 58-63, 1995; [2] Rao S. B. et al.  IEEE EMBS, 513 -516, 2003; [3] Maudsley A. A. et al. MRM 31:589-595, 1994; 
[4] Young K. et al, MRM 40: 816-821, 1998; [5] Bishop C.M. Oxford Univ. Press, 1995; [6] Gruber S. et al.  Investigative Radiology 38: 403-408, 2003;  

Area Ratios NAA/Cr Cho/Cr 
RBFNN 1.58 (0.13)* 0.90 (0.08)* 
LF [2] 1.60 (0.11)* 0.95 (0.08)* 

Published [6] 1.59 0.96 

Fig 4:  NAA 
metabolite map.  

Fig 3(a): processed input spectrum (solid),  
estimated baseline (dash), 3(b): estimated  
spectrum, 3(c): error in estimation.   

Table 1: Area Ratios for NC (N = 7).  Values 
reported as mean (std). * implies values statistically 
insignificant.     
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 Fig 5: Correlation coefficient.  
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