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Fig 2. MT parametric maps obtained with the standard (top) and the optimized 
(bottom) sampling schemes. 
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Introduction 
We present a method based on the Cramer-Rao lower bound (CRLB) (1) to optimize sampling strategies for quantitative MRI techniques that 
estimate multiple parameters by fitting a model to the MR signal. We use the method for quantitative magnetization transfer (MT) imaging, which fits 
a model to images with MT pulses of variable amplitude ω and offset frequency ∆, and show significant error reduction in MT parameter maps. 
Methods 
Typically, quantitative MRI techniques fit a model S of a physical process with various unknown parameters p1…pM to N≥M MRI measurements 
A(x1)…A(xN) acquired with different known settings x1…xN in the pulse sequence. The precision and accuracy of the estimates of the parameters, pi, 
i=1…M, depends on the sample positions xn, n=1…N. We aim to maximize the precision of the parameter estimates by finding the sample positions 
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standard deviation of background noise, which we assume is constant. Thus we optimize quantitative MRI by acquiring measurements at the xn that 
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In qMT, the acquisition variables that define the sampling points are ω and ∆, so xn=(ωn, ∆n). To illustrate the method, we use the MT model of 
Ramani et al (2), in which 
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We fit the model to measurements using a Levenberg-Marquardt 
algorithm, as in (4), to estimate six parameters: RM0

A, f/RA(1-f), T2
B, 

1/RAT2
A, RB, and gM0. Here, A and B label the liquid and the 

semisolid pools, respectively, and f is the bound proton fraction (2). 
In fact, the sum in V only includes the first four parameters, since 
we fix RB=1 and gM0 is of little interest. We use N=10. The global 
minimum of V is hard to find because V has many local minima. 
Thus, we use a minimization technique which combines simulated 
annealing with the downhill simplex method (3). Due to practical 
limitations on the combinations of ω and ∆, we constrain ω<955 
rad s-1 and ∆>0.15 kHz. 
Experiments and Results 
Table 1 compares the optimized sampling scheme returned by the 
minimization algorithm with a standard 10-point scheme (4). We 
use Monte Carlo simulations at various noise levels to measure the error in the parameters 
from the two acquisitions. Figure 1 confirms an improvement in both precision and accuracy 
for T2

B at all SNR levels when using the optimized scheme; plots for the other parameters 
show similar trends. One subject was scanned twice on a 1.5 T system using a 3D MT-
weighted fast SPGR sequence (TR/TE=28/5.1 ms, flip angle=5º, Gaussian MT pulses, 
duration=14.6 ms, 28 reconstructed slices). Three complete datasets were obtained using 
each scheme. In addition to the MT data, two 4-shot spin-echo EPIs (TR/TE=15000/13.6 
ms, flip angles=60º and 120º, matrix 64x64), and 2 3D SPGRs (TR/TE1/TE2=16/4/8.54 ms, 
flip angle 25º) were collected for B1 (5) and B0-mapping (6), respectively. Figure 2 shows the 
MT parametric maps from each scheme using only the first repeat from each acquisition 
scheme. Maps from the optimized scheme show clear improvements in spatial homogeneity 
and grey-to-white-matter contrast. After image co-registration, Ramani’s model was fitted to 
1000 bootstrapped samples (accounting for B1 and B0 inhomogeneities) for each MT point 
scheme, providing 1000 estimates of RM0

A, f/RA(1-f), T2
B, 1/RAT2

A, and gM0.  Table 2 
compares the coefficient of variance (COV), defined as standard deviation divided by mean 
across the 1000 bootstrapped samples, of the MT parameters averaged over various 
regions of interest.  The COV for the optimized scheme is consistently less than half that for 
the standard scheme, which confirms the significant improvement in parameter estimation 
observed in Fig. 2. 
Discussion 
We have shown significant improvements to MT parametric maps by 
the use of an optimal MT point sampling scheme. Simulations show 
increased accuracy in recovered parameters and experiments with 
bootstrapped brain data show increased precision. The new sampling 
scheme makes accurate and precise quantification of MT parameters 
feasible from data collected in clinically acceptable scan times. The 
method extends easily to other quantitative MRI techniques. Minor 
improvements may come from averaging V over a range of settings for 
the pi during optimization, although preliminary experiments suggest 
that the optimal sampling we show is fairly insensitive to the exact pi 
used in the optimization. 
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Fig 1. Plot of mean T2

B from 10000 Monte 
Carlo simulations against SNR in the 
unweighted image. The error bars show the 
standard deviation. The dashed line shows 
the value of T2

B used to create the 
simulation. 

  GM1 GM2 WM1 WM2 WM3 

S 31 23 28 27 21 RM0
A 

O 11 8 11 13 9 
S 16 10 12 12 10 f/RA(1-f) 

O 6 4 5 7 5 
S 18 10 8 10 9 T2

B 

O 5 2 4 4 3 
S 15 10 10 11 10 1/(RAT2

A) 

O 3 3 4 4 5 
 
Table 2. Mean parameter COV [p.u.] across 1000 
bootstrapped samples for the two schemes 
(S=standard, O=optimized). GM1=putamen; 
GM2=thalamus; WM1=genu of corpus callosum; 
WM2=anterior periventricular WM; WM3=posterior 
periventricular WM. Values are average of left and 
right for bilateral structures.  

Standard 
V=6.2 

Optimized 
V=2.0 

ω ∆ ω ∆ 
222 0.4 40 42 
222 1 130 100 
222 3 262 0.15 
222 7.5 400 1.38 
222 20 400 1.48 
885 0.4 400 1.48 
885 1 955 0.97 
885 3 955 0.98 
885 7.5 955 0.98 
885 20 955 11.6 

 

Table 1. MT point schemes. 
ω is expressed in rad s-1, ∆ 
is expressed in kHz 
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