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INTRODUCTION: The method of dynamic susceptibility contrast (DSC) MR relies on performing a deconvolution between the 
tissue concentration curves in each pixel and the arterial input function (AIF) [1].  Current methods have several drawbacks that 
include instability of the deconvolution operation when performed on noisy data and selection of a single AIF.  Using a single AIF 
cannot account for the different delay and dispersion that occur before the contrast bolus arrives at different capillary beds, especially 
in patients with hemodynamic impairment.  An additional problem with the AIF measurement arises from the high concentration of 
contrast within the arteries during the peak of the bolus.  This often causes saturation of the signal making it difficult to accurately 
estimate the contrast agent concentration during this period [2]. 

We propose a tissue perfusion model that estimates a separate AIF for each pixel in the image.  The model provides estimation of 
additional parameters that may be of clinical importance.  The parameters appearing in this model are estimated using Bayesian 
probability theory and Markov chain Monte Carlo simulations to sample the joint posterior probability.  Preliminary results using this 
model compare favorably to PET results and to traditional MR methods. 
METHODS: As part of the St. Louis Carotid Occlusion Study perfusion measurements were performed in 19 patients using both PET 
and DSC MR within the same day.  Written informed consent was obtained on all subjects in accordance with guidelines of the local 
institutional review board.  Tracer kinetic perfusion models [1] derive the following relationship between the tissue concentration 
(CT), cerebral blood flow (CBF), pixel impulse residue curve (R(t)), and the AIF (CA):CT( t) = CBF ⋅ R( t) ⊗ CA (t).  The residue 

curve was approximated as an exponential with a mean transit time (MTT) decay constant:  ( ) ( )[ ]MTTtttR /exp 0−−= .  The 

AIF was modeled as having three distinct components:  CA t( )= aGV t,t0( )+ bGV t,t1( )+ c .  The main contrast bolus was 
modeled as a gamma variate function (GV) arriving at t0.  The re-circulation peak was also modeled using a GV arriving at a later time 
t1.  The steady state component was modeled as a constant.  These expressions were substituted into the first equation and the 
convolution was performed analytically.  The posterior probabilities for the model parameters were computed for each pixel given the 
time series data using Bayesian probability theory [3] and Metropolis-Hastings Markov chain Monte Carlo simulation with simulated 
annealing [4]. Regions of interest (ROI) were selected in different anatomic structures of the brain in all subjects to evaluate the 
perfusion parameters. 
RESULTS: Parameter estimates in a patient with left hemodynamic impairment are 
presented in the left figure.  This patient had asymmetry in the MTT and CBV maps, but not 
in CBF.  Figure left is a map of the rise time exponent of the GV function.  Figure middle 
and right show asymmetry between left and right in the primary and secondary bolus arrival 
time, which is longer on the left (neurology convention).  The right figures present a 
comparison in the same patient between the CBF calculated using the proposed method vs. 
Maximum Likelihood DSC MR CBF (top) and PET CBF (bottom). 
CONCLUSION: Parameter estimation based on the proposed model using Bayesian 
inference produces parameter values comparable to traditional methods and overcomes many 
of the disadvantages of current techniques.  Many of the model parameters are unique and 
could provide important physiological information not available using current techniques. 
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