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Chemical Shift Artifact

Magnetic resonance imaging (MRI) of protons in the human body exploits the
fact that the relative magnetization of the proton is the highest of all nuclei, and more
importantly, that the abundance of protons is extremely high — approximately 55 molar in
pure water. Although a large percentage of protons are found in the form of water, with a
single resonant peak at approximately 63.9 MHz at 1.5T, they are also found in large
proportion, within the lipid component of adipose tissue. Fat has a complex spectrum
with multiple peaks, the largest of which are shifted approximately 3.5ppm from the
water peak, or about -210Hz from water at 1.5T (1). For the purposes of simplicity, we
will assume that fat resonates at a single peak -210Hz from water.

MR reconstruction methods generally assume a single, sharp resonant peak for all
structures within the body. Magnetic field gradients are then applied to create spatially
dependent frequency shifts that are used facilitate the separation of the protons at
different locations into an image. Typically, the Fourier transform is used decompose
spins at different spatial locations. Unfortunately, the presence of fat creates a constant
frequency shift, so that fat spins resonant approximately -210Hz more slowly than water.
From the perspective of the Fourier transform, there is no difference between spins from
fat, and those from water that are shifted spatially where the resonant frequency is
—210Hz lower, due to a lower magnetic field gradient. Figure 1 depicts a “one-
dimensional” imaging experiment, with a small focus of water and fat located at the same
position. In the presence of a readout gradient in the x-direction, the frequency of the
spins increases across the image. The fat resonates more slowly than water, however, and
after Fourier transformation (which ‘thinks’ there is only one species, water), the fat
signal is mapped to a location closer to isocenter by an amount Ax . This “chemical shift”
is directly related to frequency shift between water and fat and manifests as a shift of fat
with respect to water in the readout direction of the image. No shift occurs in the phase
encoding direction.

Fourier Transform

Water /_"7” E‘E:: i
=f /.--Fat f =/
zluﬂz{ ) 1.
— = —
. VWater=1§ Arx
Faeg Chemical Shift

Figure 1: the signal from a small amount of water (solid oval) and fat (open oval) at the same x-position
have different frequencies which are mapped to different spatial locations in the image, offset by Ax, after
image reconstruction (Fourier transform).



Figure 2 shows an example of a TIW spin-echo image of a pelvic endometrioma (water
signal) surrounded by fat. Fat is shifted in the readout direction creating “bunched up”
signal on one aspect of the endometrioma and a rim of signal void on the opposite aspect.

Y - i sl ™ Figure 2: Axial TIW
spin-echo image of an
endometrioma (*) in the
pelvis surrounded by fat.
The fat is shifted in the
readout direction (left-
right), creating ‘“bunched
up” signal on the left
aspect of the mass (left
arrows) and a rim of signal
void on the right aspect of
the mass (right arrows).

The chemical shift artifact occurs only in the readout direction, and in this case the
amount of chemical shift does little to degrade the image. In fact, this “artifact” helps
distinguish this mass from a fatty masses such as a lipoma or ovarian dermoids.

As can be appreciated from figure 1, the slope of the readout gradient that is used
will determine the actual shift in the image, Ax. The behavior of the readout gradient is
determined by the choice of field of view, readout matrix size and the acquisition
bandwidth. It can be shown that the chemical shift (in pixels) in the readout direction is,

X

= (1) where Ny is the size of the readout matrix, Af is the chemical shift
2BW between water and fat (Hz), and BW is the readout bandwidth. For
example, at 1.5T, Af is -210Hz, and if we choose Ny to be 256, and the bandwidth to be
+32kHz, the expected chemical shift is about 0.8 pixels, an acceptable amount of shift.
However, at 3.0T, Af increases to -420Hz, and if we choose Ny to be 512, and the
bandwidth to be £16kHz, the expected chemical shift is about 6.7 pixels, a very large
shift that will surely degrade image quality. Equation 1 and these examples help
illustrate the interplay between field strength, matrix size, and bandwidth and how they
affect the expected chemical shift artifact.
In general, Ny is fixed and we choose the lowest possible bandwidth to maximize
SNR, while maintaining acceptable chemical shift artifact; the bandwidth for many
clinical protocols is chosen in this way. Unfortunately, the chemical shift artifact
worsens at higher field strengths. This can be compensated with higher bandwidths,
partially offsetting the SNR benefits of the higher field strength.



Fat Suppression

Reliable and uniform fat-suppression is essential for accurate diagnoses in many
areas of MR imaging. This is particularly true for sequences like fast spin-echo (FSE),
spoiled gradient echo (SPGR), and steady-state free precession (SSFP) imaging where fat
is bright and may obscure underlying pathology. Reliable fat-suppression has the added
benefit of eliminating chemical shift artifact, by virtue of the fact that fat signal is no
longer present, and therefore may allow the use of lower bandwidths that can be used to
improve SNR. Several commonly used approaches for fat-suppression are now described.

Spectrally Selective Saturation Pulses: ““Fat-Sat™

Spectrally selective saturation (90°) or inversion (180°) pulses are commonly used
with many pulse sequences for reliable and effective suppression of fat-signal (2). These
pulses rely on the difference in resonant frequency between water and fat, and using RF
energy transmitted in a narrow frequency spectrum centered at the fat-peak they are used
to destroy the longitudinal magnetization of fat within the object. They are usually
followed immediately by a crusher gradient, after which the standard imaging sequence is
played. Fat-sat pulses are highly effective in regions where both the main magnetic field
(Bo) and the RF field from the coil (B;) are relatively homogeneous. Typical applications
where fat-sat pulses are effective include the knee, pelvis, and abdomen. The primary
disadvantages of fat-sat pulses is that they are relatively sensitive to field
inhomogeneities that shift the position of the water and fat peaks with respect to the

th-Sat Pglse

o ]

A)  Water Fat "I | B)

Figure 3: Schematic spectrum of water and fat peaks and the positioning of a spectrally selective
saturation (“fat-sat”) pulse over the primary fat peaks, -210Hz from the water peak, before (A) and after
(B) the application of the fat-sat pulse.

frequency of the fat-sat pulse. This can result in failed fat suppression, and even cause
inadvertent suppression of water signal. Fat-sat pulses are also sensitive to RF
inhomogeneities and do not perform well with transmit surface coils; one must rely on
coils with uniform RF fields, such as head, body and extremity coils..

Short Tau Inversion Recovery (“STIR™)

Effective fat-suppression can also be achieved by exploiting T, differences
between fat and soft tissues containing water. Short tau inversion recovery or “STIR”
pulses play a broad spectrum inversion pulse that rotates all magnetization (water and fat)
along the —M; axis (3). Fat has a shorter T; than most soft tissues and if an image is
acquired as the longitudinal magnetization of fat is crossing through zero (“zero-



crossing”), the signal from fat will be nulled in the resulting image (figure 3). The zero-
crossing occurs at approximately 200ms. STIR is a highly reliable method of fat-
suppression, and although it is sensitive to RF inhomogeneties, it is very insensitive to
field inhomogeneities, which are generally more problematic. STIR can be used a wide
variety of challenging applications such as foot/ankle, spine, neck, brachial plexus, orbits,
and wrist, etc. An inherent disadvantage of STIR imaging is its inability to perform T1W
imaging, particularly after IV contrast, so that STIR is limited to proton density or T2W
imaging. In addition the SNR performance is relatively poor and the relatively long

Figure 4: Short-tau inversion
recovery imaging acquires images
approximately 200ms after the
inversion pulse, during the fat
zero-crossing, providing robust fat
suppression, but poor SNR
performance.
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Spectral-Spatial Excitation and Water Selective Pulses

A more advanced approach is to exploit differences in resonant frequency
between water and fat by direct excitation of the water peak, rather than suppression of
the fat peak(4,5). One of the earliest implementations, known as “spectral-spatial” pulses
invokes the concept of adding a spectral dimension to excitation k-space (4). The details
of this notation are beyond the scope of this abstract, although spectral-spatial pulses can
be explained in a simplified manner, as follows. Consider a train of slice-selective “a”
pulses, each with a small tip angle, a, eg. 5-10° . These a pulses are separated by the time
needed for fat to precess 180° relative to water, or T=1/(2Af), about 2.3ms at 1.5T. As
shown in figure 4, after the first & pulse, both fat and water are tipped a degrees from the
z-axis. Immediately before the next pulse, however, the fat has precessed 180° in the
transverse plane, and is subsequently tipped back along the M, axis, while the water
continues it’s trajectory towards the transverse plane. A more accurate and detailed
description of spectral-spatial pulses is found elsewhere (4).

Spectral-spatial pulses are a very effective means of exciting water within an
image and are most commonly used in conjunction with spiral imaging and echo planar



imaging (EPI), although it can be combined with other sequences such as spoiled gradient
echo and fast spin-echo imaging (6,7). Although spectral-spatial pulses are relatively
insensitive to RF inhomogeneities, they remain sensitive to field inhomogeneities, similar
to conventional fat-sat pulses (4). Its other major drawback is the need for lengthy pulses,

and for this reason spectral pulses are most commonly used with sequences with longer
TR’s (eg. spiral, EPI).
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Figure 5: Schematic of spectral-spatial pulses. a pulses are separated by a time, T, sufficient to create a
180° phase shift between water and fat. T is approximately 2.3ms at 1.5T. Immediately after the first a
pulse, water and fat are tipped together, however immediately before the next a pulse, the fat has
precessed 180° such that after the second @ pulse, the fat is tipped back up along the M, axis and the
water is tipped further towards the transverse plane.

“Dixon’” Water-Fat Separation Methods

The final method for fat-suppression discussed in this work is the class of
approaches known as “Dixon” water-fat separation (1,8-11). Unlike the methods
described above, which suppress fat signal or selectively excite water, Dixon methods
rely on the phase shifts created by fat-water resonant frequency differences to separate
water from fat. In this way, water and fat signals can each be visualized directly. The
initial approach proposed by Dixon (8) acquired two images at different TE’s such that
water and fat were “in-phase” (S;;=W+F) or “out of phase” (S,,=W-F). By adding and
subtracting Si, and Sy, water (W) and fat (F) can be separated. The original approach
required only two images, but was relatively sensitive to field inhomogeneities, and has
been modified to a variety of “three-point” methods that compensate for these
inhomogeneities (1,9-11). More recent approaches (11) allow arbitrary and unequally
spaced echoes that permit SNR optimization and are helpful for specific applications. All
Dixon approaches are insensitive to both RF inhomogeneities and provide robust water-
fat separation despite the presence of field inhomogeneities. They are compatible with a
wide variety of pulse sequences including T2W-FSE, TIW-FSE, SPGR, and SSFP.
Figure 6 is an example of sagittal TIW-FSE images and coronal T2W-FSE images for
the cervical spine and brachial plexus of a normal volunteer, comparing fat-saturation
with Dixon imaging. Tremendous improvement in the quality of fat-suppression can be
seen with the Dixon images. Fat-saturation typically fails in this region of the body
because of the unfavorable geometry of the lung apices and neck where large



susceptibility differences create severe magnetic field inhomogeneities. Fat images and
recombined images are also available for review with the Dixon method (not shown).

An interesting advantage of Dixon imaging is the ability to recombine water and
fat images together, after the fat image has been shifted to correct for chemical shift
artifact. This opens interesting possibilities for low-bandwidth imaging and imaging at
higher field strengths, free from chemical shift artifact. The primary disadvantage of all
Dixon methods is the increased scan times required to acquire the images necessary to
separate water from fat. Despite this, the decomposition is highly SNR efficient if the
correct choice of TE’s are used (12). With the correct choice of echoes, the signal from
the three images is used with maximum efficiency in the calculation of the water and fat
images. Methods for scan time reduction is currently being investigated through partial k-
space acquisition methods and parallel imaging (13,14). The latter approach is highly
complementary to Dixon imaging, because SNR penalties of parallel imaging are exactly
offset by gains in the SNR from the Dixon reconstruction.

Figure 6: Sagittal TIW-FSE
images (top row) and coronal
T2W-FSE images (bottom row)
of the cervical spine and brachial
plexus. Tremendous improvement
in fat-suppression quality is seen
with Dixon imaging (right
column) compared with
conventional fat-saturated images
(left column). Arrows depict
areas of failed fat suppression or
inadvertent water suppression.
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