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Introduction 
 
Transplanted stem and post-mitotic cells show great promise as therapeutic agents in a 
number of diseases, including Alzheimer’s disease, Parkinson’s disease and myocardial 
infarction, among many others. The curative use of transplanted cells would be aided 
greatly by non-invasive techniques for visualizing the distribution and location of cells 
following transplantation or infusion. Particularly in cases where widespread migration of 
delivered cells is necessary, longitudinal monitoring of cellular migration non-invasively 
could be crucial. Coupled with functional and metabolic assessments, non-invasive 
imaging of stem cell grafting would have a profound effect on physicians’ ability to 
serially monitor and adjust treatment. 
 
Magnetic resonance imaging is a powerful tool for visualizing cellular trafficking, 
homing and migration in intact animals. Centrally important and advantageous to cellular 
imaging in intact animals, is the ability of MRI examinations to be performed 
longitudinally and non-invasively, all within appropriately rapid scan times. Cellular 
detection is most often accomplished via T2 or T2* based mechanisms following 
incorporation of contrast agent either within the cell or attached to the cell. In general, 
superparamagnetic iron oxide based contrast agents are used to generate contrast, and 
when sufficient metal is accumulated within a cell, and at high enough image resolution, 
single cells can be detected, even in vivo. Herein are described common methods for 
labeling cells for cellular imaging and imaging techniques for their visualization. 
  
Cell tracking contrast agents 
 
T2 and T2* weighted contrast 
Superparamagnetic iron oxide particles are the most common form of contrast agent for 
cell tracking by MRI. Extensive reviews of these types of contrast agents can be found 
here 1,2. Differing from paramagnetism, where a Boltzman distribution term qualifies the 
degree of alignment of the magnetic dipoles in a magnetic field, the magnetic dipoles of 
superparamagnetic materials add in a magnetic field, making them stronger contrast 
agents. The properties of common particle based cell labeling contrast agents are shown 
here:  
 

 Coating Iron oxide content Overall size 
USPIO Dextran Single ~ 4-6 nm crystal 10 – 20 nm 
SPIO Dextran Multiple ~ 4-6 nm crystals 50-100 nm 
MPIO Polystyrene As high as 40% iron by weight 

0.1-10 pg iron per MPIO 
0.96 – 5.8 micron 



Commercially available USPIOs and SPIOs are most often biodegradable dextran coated 
and present the opportunity for surface modification to allow the attachment of antibodies 
or peptides to aid in cellular uptake. Commercially available MPIOs are most often 
polystyrene-based inert polymer coated, and can be purchased with chemical 
functionality and fluorescence built directly into the coating. MPIOs package from 0.1 pg 
iron in a 0.96 micron diameter particle to more than 10 pg iron in a 4.5 micron diameter 
particle. In fact, cells harboring just single MPIOs can be detected by MRI 3. USPIO 
particles have been successfully synthesized to have many different coatings, such as 
starch 4 or citrate 5, for example. Polymeric macromolecular iron dendrimers (40-50 
nanometers) have also been used to successfully label cells for cell tracking 6, as have 
macromolecular complexes of gadolinium, one example being GRID 7.  
 
Incorporation of superparamagnetic contrast agents in a way that clusters them results in 
a magnification of their relaxation properties 8. This is largely the product of several 
different physical phenomena. One important process, particularly with USPIOs and 
SPIOs is that clustering of these small particles results in the magnetic properties of this 
cluster being more like the overall size of the cluster, rather than the individual small 
particles themselves. This places the relaxation regime of neighboring water molecules in 
the static dephasing regime 9 and enhances T2* relaxivity 8. A second potential 
enhancement mechanism may be magnetic co-operativity between the magnetic cores of 
the particles, resulting in superferromagnetism within the magnetic field of the MRI 
magnet.  
 
T1 weighted contrast 
Whereas most cell tracking studies using MRI have employed T2 or T2* weighted 
contrast, T1 agents have been successfully used to label cells for MRI as well. An early 
study demonstrated red blood cells labeled with chromium could produce T1 effects 10. 
Continuing along these lines, red blood cells labeled with gadolinium were also shown to 
produce detectable T1 contrast 11. Recently, labeling of lymphocytes with manganese has 
been demonstrated, with estimates of detectability of 25 cells per 100 micron3 voxel 12. 
 
In vitro cell labeling for cell tracking 
 
The main objective of magnetic cell labeling is to maximize incorporated contrast agent 
without interfering with cellular functions or adding new ones. To this end, there are 
different methods for cell labeling depending on which contrast agent is used. In early 
experiments 13, cells in culture were labeled with native USPIOs by simple incubation, 
relying on fluid phase pinocytosis for intracellular uptake. Importantly, cellular function 
did not seem to be altered by the incorporation of the particles. However, simple 
incubation usually proves to be an inefficient method for cell labeling with USPIOs. 
Other early experiments used a biotinylated antibody to target cells in culture, followed 
by streptavidin, and subsequently followed by biotinylated particles to effect cell labeling 
14.  In an effort to amplify intracellular labeling with USPIOs, Josephson et al 15 attached 
the HIV-1 TAT protein, a peptide which conveys membrane translocation, to a 
chemically cross-linked version of their USPIO and realized a gain of 100X in 
intracellular iron, yielding a high of ~ 2.5 pg iron/cell. Similar multiplied gains in 



labeling efficiency were realized in mouse neural progenitor cells, human CD34+ 
lymphocytes and hematopoetic stem cells, and mouse splenocytes, achieving 10-30 pg 
iron/cell 16. This was achieved by using 40 ug of contrast agent per 105 cells.  
 
For cell labeling with SPIO particles, simple incubation of cells in culture with native 
particles also provides for cell labeling. However, significant work has been undertaken 
in complexing SPIOs with transfection agents, such as poly-lysine 17, protamine sulfate 
18, or other commercially available transfection agents 19,20. While careful titration of 
contrast agent and transfection agent are necessary to prevent precipitation of the contrast 
agent, in general a concentration of SPIO at 25 to 50 ug/ml with an SPIO:poly-lysine 
ratio of 15-30:1, incubated overnight, achieves cell labeling as high as 15-20 pg iron/cell 
21. Recently, electroporation has been successfully used to label cells with SPIO particles 
22. Cellular iron content following electroporation was equivalent to that achieved with 
transfection agent assistance. 
 
An alternative to magnetic cell labeling with nanoparticles is to use micron sized iron 
oxide particles, MPIOs, in essence a pre-clustered version of USPIOs 23,24. For cells that 
grow adherent to culture dishes, magnetic cell labeling is accomplished by simple 
overnight incubation of particles 24. In this manner, iron contents as high as hundreds of 
pg iron can be achieved with minimal cell death. As particles are heavy enough to sink, 
cells which grow in suspension can be labeled by first pre-targeting with biotinylated 
antibodies, then labeled with streptavidin coated MPIOs.  
 

      A        B         C    D 
Figure 1: A) Contrast agent (green dipoles) is added to growth medium containing cells 
(blue circle). B) Contrast agent attaches to edge of the cell. This can be helped by 
transfection agents or by charging the particles. C) Contrast agent is taken up by a 
variety of methods, from pinocytosis for small particles to phagocytosis for larger 
particles. Cross-membrane translocation can be aided by the use of the TAT peptide. 
Particles almost always are shuttled to endosomes and/or lysosomes (white circles). At 
this point, the cell becomes the contrast agent, more so than the individual particles 
themselves. Particles almost never enter the nucleus (red circle). D) Electron micrograph 
of a mesenchymal stem cell loaded with 1.63 micron MPIOs (scattered black contrast). 
 



In vivo cell labeling for cell tracking 
 
Injection of USPIOs intravenously results in specific labeling of resident phagocytotic 
cells of the reticuloendothelial and mononuclear phagocyte systems, as well as peripheral 
cells such macrophages. Peripheral macrophages home to sites of various diseases, and 
labeled macrophages will report on conditions such as rheumatoid arthritis 25, organ 
rejection following transplantation 26, atherosclerosis 27, mouse models of multiple 
sclerosis 28 and ischemic brain damage 29. These topics have recently been reviewed 30. In 
general, USPIO doses range from 10’s to 100’s µmol iron/kg and imaging takes place 24 
hours after injection. USPIO administration is preferred over larger SPIOs for in vivo 
macrophage labeling largely due to the much longer blood half-life versus SPIO, 
enabling longer contact time with cells. However, a measurement of iron loading per cell 
has not yet been fully investigated.  
 
Recently, it has been demonstrated that MPIOs can label neural stem cells in vivo 31. 
Since individual MPIOs pack as much as 10 pg iron within a single particle, only one or a 
few particles are necessary for robust MRI detection. This allows inefficient labeling 
schemes in areas not accessible by blood injections. Neural stem cells lining the lateral 
ventricles in adult rats were labeled with MPIOs by directly injecting MPIOs into the 
ventricle. The MPIOs were first incorporated into the stem cells, and then passed on to 
daughter cells. When these daughter cells migrated from the ventricle to the OBs, this 
migration could be detected by MRI.  
 
MRI methods for detecting magnetically labeled cells 
 
With most cell tracking experiments being performed in animals, there is an emphasis on 
both high resolution and rapid imaging time. Generally speaking, rodents can be 
anesthetized and successfully maintained for a period of several hours. However, during 
this time, metabolic fluctuations, as well as physical motions can and do occur, even 
when the rodents are mounted in appropriate imaging frames. Furthermore, the cellular 
migration that we are interested in is occurring during the procedure and rapid migration 
can actually blur the location of the contrast in the image. Therefore, it is usually 
advisable to keep the imaging scans as fast as possible, to within an hour or two.  
 
Because of the heavy iron load in cells labeled with iron oxide particle based contrast 
agents, diffusion sensitized T2 and T2* weighted contrast work best. The thick coating of 
the particles restricts the closest distance water molecules can approach the particles, 
rendering T1 and real T2 relaxation processes relatively inefficient. To this end, sequences 
which are sensitive to magnetic field gradients are most often used to detect labeled cells. 
Extended echo spin echo or gradient echo pulse sequences can provide for both contrast 
and high resolution, especially when performed as 3D sequences. At clinical fields, FISP 
based sequences are efficient and well suited for imaging 32. However, as the field moves 
towards single cell detection, a premium will be put on imaging resolution. For example, 
a recent demonstration of in vivo single cell detection in mouse liver was accomplished 
using voxel sizes of 100 x 100 x 300 microns, employing T2* contrast 33.  
 



What’s on the horizon? 
 
The future of MR based cell tracking is bright. Already, a first study tracking USPIO 
labeled dendritic cells in humans has been accomplished 34. Major steps moving forward 
will likely involve a few key areas. The first will be continued improvements in contrast 
agents. A possible problem with T2 and T2* based contrast is that there is a loss of signal, 
and spurious dark contrast is present from blood and tissue/air interfaces. Stronger 
contrast agents would allow shorter echo times while achieving the same contrast, which, 
especially for T2* contrast, will make less spurious dark contrast in the images.  
 
Another area where major advances would be important is in reporting MRI agents. The 
dark MRI contrast from a labeled cell is only indicative of the presence of the contrast 
agent, and it is difficult to determine whether the contrast is from the originally 
transplanted cell, or from free particles, or from a macrophage which endocytosed 
released material, simply from the MR image. Contrast agents which are sensitive to 
biological events inside the cell, or which can report on altered gene expression, i.e. when 
a stem cell turns into a neuron, will aid in removing this uncertainty. These contrast 
mechanisms may involve aggregation events which alter the relaxivity of the contrast 
agent 35 or ferritin expression 36. 
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