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1. Introduction 
Receiver coil arrays, first introduced in the late 1980’s [1,2], have become the preferred 

MR imaging coils over volume coils due to their ability to provide high SNR and wide anatomi-
cal coverage simultaneously. Recent cost reductions in analog-to-digital conversion technology 
and computing power have enabled an increase in the number of receiver channels available in 
the current clinical imaging systems to 16 or 32. Array coils and independent receiver chains 
also enable parallel imaging techniques [3,4] which make use of the additional spatial encoding 
provided by the receive sensitivities of the array elements to scan more efficiently.  

The parallel imaging performance of an array is closely related to the uniqueness of each 
element’s sensitivity pattern. For such applications (indeed most arrays today are used for paral-
lel imaging at least some of the time) the design process begins by choosing the number, shape 
and arrangement of the elements, followed by electromagnetic field modeling to predict sensi-
tivity patterns and the noise covariance matrix needed to calculate parallel imaging perform-
ance, e.g., the geometry factor [3]. Optimization can then be performed [5,6]. In general the re-
sulting array is different from that obtained by designing for optimal SNR in conventional imag-
ing [2,7], especially if the number of coils is limited [8]. 

2. The Receive-Only Surface Coil 
Once the geometrical part of the design is decided we can begin designing the electron-

ics. It is useful to recall some principles of receive-only surface coil design given the many fea-
tures in common with the single elements of the array.  
2.1 Transmit detuning 

Each element of a coil array is a surface coil designed to receive the signal from the nu-
clear spins. During RF excitation pulses, usually provided by a body transmit coil, the receiver 
coil must be “transparent”, i.e., it must not distort the B1

+ profile of the volume coil. This can be 
achieved by limiting the currents on the coil induced by the transmit field to negligible levels by 
ensuring that the total impedance of the coil loop is sufficiently high [9]. This, unfortunately, is 
far from true for a coil that is resonant at the NMR frequency. 

The total impedance of the coil must therefore be switched from low in the receive state, 
to high in the transmit state. There are two approaches to achieving this: active detuning and 
passive detuning. The simplest is passive detuning, which relies on the transmit field’s ability to 
forward bias a pair of crossed high-speed diodes [10]. In the most common configuration the 
diodes act as a switch that connects a parallel resonant trap to the coil thus opening the circuit. 
This method is seldom used except as a redundant safety feature because if the transmit field is 
not intense enough the diodes will not be fully switched on and the strong interaction between 
transmit and receiver coils will persist. 

Active detuning is more reliable but requires bringing an external DC bias voltage to di-
odes on the coil [9]. The switching devices most often used today are PIN diodes, i.e., a silicon 
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PN junction separated by a thin layer of intrinsic semiconductor. This construction increases the 
carrier lifetime and allows the diode to control large RF currents with a small DC current and 
low RF resistance. The additional logic signal required to switch the coil between transmit and 
receive states is supplied by the spectrometer either on a dedicated line or using the power RF 
amplifier’s unblank signal.  
2.2 Noise matching to preamplifier 

Thermal noise is generated in all lossy components, as well as within the preamplifier it-
self, and is characterized by the noise factor F (or noise figure, NF = 10logF, when expressed in 
decibels (dB)), the ratio of output to input SNR. The first stage of amplification is the most criti-
cal since the noise factor, F, of a cascade of signal transmission stages (not necessarily amplifi-
cation) is calculated from the individual noise factors, Fi, and gains, Gi, as [11] 
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This relationship also implies that any noisy circuit placed before the preamplifier will have a 
great impact on the achievable noise performance. Consequently the connection between the 
coil and preamp  (i.e., the matching circuit) must be given careful consideration. Low-loss com-
ponents such as air-wound inductors are recommended and using cables between the coil and 
preamp is strongly discouraged. Avoiding cables also facilitates matching since the necessity to 
match to the characteristic impedance of the cable at both ends is eliminated.  

Matching is required because the preamplifier will achieve its best noise performance 
only when at its input it sees an impedance equal to Zopt, which should be obtained from techni-
cal documentation or bench measurements. For FET input stages Zopt is of the order of a few 
hundred ohms. If the impedance at the input, Zs, is not equal to Zopt the noise factor will be de-
graded according to [11] 
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where Rn is the preamp’s correlation resistance and the Γ’s are reflection coefficients calculated 
using impedance Z0 (usually 50Ω) as a reference: 
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In case the noise parameters of the preamp are not known it is nevertheless possible (al-
beit tedious) to vary the coil-preamp matching and measure the SNR using an imaging sequence 
until an optimal configuration is found. 

3. Surface Coil Arrays 
3.1 Coil Decoupling 

Creating an array is not as simple as putting together a number of elements described 
above mainly because of inductive coupling, which causes changes in the frequency response of 
the elements and degrades their sensitivity. Coupling also reduces the spatial uniqueness of the 
signals acquired from the coils, although there has been some debate recently questioning the 
necessity of strictly minimizing signal coupling to achieve optimal SNR and parallel imaging 
performance [12,13].  



A coupling of −20dB or lower is considered good for most applications, and values 
around −10dB are common for closely coupled coils. The lowest achievable coupling (i.e., 
eliminating the inductive component) is determined by the coils’ mutual resistance through the 
loading phantom [14,15] (giving rise to noise correlation) as well as parasitic capacitances, es-
pecially at higher frequencies. 

3.1.1 Geometric decoupling 
This method takes advantage of the fact that when two coils are overlapped there exists a 

separation where the mutual inductance is zero [2,16]. At this overlap the coupling between the 
coils is minimal and given only by parasitic capacitance and mutual resistance through the sam-
ple. While this technique has the advantage of being broadband, unfortunately it cannot be ex-
tended beyond three coils [7], and therefore additional techniques have been developed. Fur-
thermore, parallel imaging techniques  are known to sometimes achieve better spatial encoding 
if the coil elements are not overlapped [6]. 

3.1.2 Preamplifier decoupling 
Preamp decoupling uses preamplifiers with either a very large or very small input resis-

tance (more generally a large input reflection coefficient). This additional demand on preampli-
fier performance is not easy to achieve while maintaining good stability and noise characteris-
tics, especially at higher frequencies. An important advantage of preamp decoupling is its ro-
bustness against changes in geometry. Arrays on flexible or adjustable formers are therefore 
possible without requiring electrical adjustments each time a mechanical adjustment is made. 

Preamp decoupling is achieved by creating a large 
impedance at the coil’s ports [2] with the aid of a match-
ing network [17], thus limiting the current flowing in the 
coil and therefore the amount of signal coupled to other 
coils. A typical frequency response of a preamp decoup-
led coil, with its characteristic double resonance due to the 
coupling of two resonant circuits (coil and matching net-
work), is shown here. The MR frequency (marked ∇) 
must be in the flat part of the frequency response. 

Achieving optimal noise matching and good pre-
amp decoupling are often conflicting goals and some 
compromise between the two may be required. Consider the following circuit. 
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Equations for the circuit at resonance are 



2

2

/C in

A

Z Z n

Z n R

=

=
, 

where n is the voltage transformation ratio of the matching network, R = ωL/Q is the resistance 
measured with the coil loaded and Q is the quality factor. The conditions for noise matching and 
preamp decoupling are, respectively, 
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It is readily shown that there exist situations for which these conditions cannot be satis-
fied simultaneously. For example, if Zopt = 400 Ω and R = 4 Ω then we need n2 = 100 to satisfy 
the noise matching condition. If the amplifier’s Zin = 1500 Ω then ZC = 15 Ω which is not » R. 
Besides the difficult option of obtaining a better preamplifier (with a larger Zin) the only way to 
improve preamp decoupling is to accept a larger noise figure. 

3.1.3 Reactive decoupling 
If the coupling matrix is known it is possible to design networks of capacitors and induc-

tors that introduce couplings that are equal but opposite to those present between the coils 
[18,19]. This technique has proven particularly advantageous where preamp decoupling is not 
feasible (e.g., transmit-receive arrays) and at high fields. However, changes in coupling with 
time, position, loading, etc. are not easily accommodated. 
3.2 Measurement of coil coupling 

The direct measurement of coil coupling in a receive-only array using a network ana-
lyzer (S21 measurement) is not possible due to the presence of the preamplifier (a non-reciprocal 
device). One method of circumventing this problem is illustrated below: 
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An initial reference measurement is taken by driving a current in coil 2 with a shielded 

loop probe connected to the network analyzer’s transmitting port (usually #1) and receiving 
(dotted probe) with the other port. It is important that the probes be attached rigidly to the coils 
throughout the measurement. The subsequent measurements are taken with the second probe 
coupled to coil #1 while the distance between the coils is varied. Results for two 10cm × 20cm 
loops (below) show the expected increase in coupling as the coils are brought closer, with a 
maximum when they are nearly touching. In this situation the coupling is maintained low by the 



preamplifier on coil #2. An overlap of 2cm results in greatly reduced coupling due to the cancel-
lation in mutual inductance (geometric decoupling). Loaded and unloaded refers to the presence 
of a loading phantom underneath the coils. 
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A more practical method is to measure the noise correlation between channels, e.g., by 

acquiring a sufficient number [20] of noise samples with the coil array connected to the MR sys-
tem and calculating the correlation between data in different channels. A relationship exists be-
tween the noise correlation and electrical coupling parameters (S parameters) [21,22], thus al-
lowing for comparisons between the two methods.  

4. Cabling and Safety Issues 
Cabling and related grounding are critical parts of any array. Poor cabling can create ad-

ditional coupling between the channels, as well as B1
+ distortion and heating hazards due to cur-

rents flowing on ground conductors during transmission. This is especially important at higher 
frequencies where parasitic coupling between coils can create low-impedance loops that pick up 
RF energy. Proper cable routing is the first step to avoid these problems: one method is to route 
cables along regions of low electric fields (virtual grounds) [2]. Such regions can also be created 
by using additional conductive guard rings [23].  

Remaining problems are solved by introducing cable traps near the coils [24] and/or 
sleeve baluns along the cables [25] to block shield currents that would otherwise flow on the 
outside of the shields of the coaxial cables. An easy bench test for shield currents is to grasp the 
coaxial cable with your hand and see if the frequency response or Q of the coil changes. On the 
bench one may also use clip-on ferrite cores to determine the optimal positioning of baluns. 
Traps must be positioned to avoid contact with the patient since the significant currents that may 
be present can create heating and consequently a burn danger. 

5. Outlook 
Developments in coil array technology is continuing in several directions. Arrays with 

larger numbers of elements are continuously being developed, as are applications in very-high 
field systems. Each of these will benefit from wireless [26] or fiber optic connections [27] to the 
system by reducing the bulk of cables required and enhancing safety. Theoretical investigations 
into the effects of noise from the electronics as coil size diminishes and frequency increases [8] 
have also been undertaken and await experimental confirmation. Miniaturization of the pream-
plifier and other electronics associated with each coil will also be required to crowd many ele-
ments into a small space. 
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