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 A wealth of functional information can be derived from MRI exams when using 
MR contrast agents. Depending on the choice of contrast agent type, dose, and rate of 
administration along with the choice of imaging sequence a study can be primarily 
sensitive to the T1 or T2 effects of a contrast agent, and can provide measures of 
cerebral blood volume (CBV) and flow (CBF), vascular morphology and permeability 
under steady state or dynamic conditions. 
 
 In this course we will describe relaxivity, or T1-based approaches to 1. measure 
CBV under steady-state conditions and 2. vascular permeability using dynamic contrast-
enhanced (DCE) methods. Next, susceptibility (T2, T2*) methods will be discussed, 
including 3. measurement of CBV using dynamic susceptibility contrast methods (DSC) 
and 4. measurement of CBV and vascular morphology under steady-state conditions 
using long-lived intravascular susceptibility agents.    
 
 For each topic issues regarding MRI quantification of physiologic parameters will 
also be discussed.  The issues regarding each of these techniques primarily result from 
the fact that MRI contrast agents are unique among diagnostic agents in that the MRI 
signal is rarely a direct measure of contrast agent concentration.  Rather it depends on 
the effect that the contrast agent has on the tissue water magnetization (i.e., T1, T2, 
T2*).  Therefore, to correctly interpret contrast agent studies, an understanding of the 
effect of water movement on the MR signal is critical.   
 

 
1.  Steady-State T1 (Relaxivity) Studies for the Measurement of CBV 
 

Relaxivity is the term given to describe the constant of proportionality describing 
the relaxation efficiency of the contrast agent.  The most commonly used relaxivity 
agents are gadolinium (Gd)-chelated contrast agents.  Though Gd agents increase the 
1/T2 of water protons roughly the same amount that it increases 1/T1, the effect is 
greater on T1 rates since in tissue 1/T2 >> 1/T1 before contrast.  Therefore these 
agents are often referred to as T1 agents.  Typically T1-weighted imaging protocols are 
used with typical doses (eg 0.1mmole Gd / kg) of Gd agents.  For the steady-state 
studies, described next, Gd is typically bound to a large molecular weight moiety such 
as albumin [1] or polylysine [2]. 

 
 There is a long history of using long-lived intravascular T1 agents for measuring 
tissue blood volume in animals (eg [3-5]).   One of the earliest of these studies was 
performed in normal rat brain where CBV changes reflected changes in brain pCO2 [4]. 
The studies were performed in animals because long-lived T1 agents did not exist for 
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human use, until recently [6].   The approach used to measure the tissue blood volume 
alternated between looking at pre and post-contrast signal differences (∆S) and pre and 
post-contrast T1 relaxation rate differences (∆R1).  Implicit in the choice of calculation 
model is an assumption regarding the rate of water exchange between the intravascular 
and extravascular tissue compartments.  Specifically, the ∆S model is most appropriate 
if the water exchange rate is slow relative to the difference between the compartmental 
exchange rates [7].  Alternatively calculation of CBV from ∆R1 is most appropriate if the 
exchange rate is fast.  In brain, with an intact blood brain barrier the vascular-
extravascular exchange rate is relatively slow [8].  However, with pathologies, such as 
brain tumors, where the blood brain barrier is often disrupted, this may not be the case.    
Studies have demonstrated that the accuracy of the CBV measurement will depend on 
the choice of measurement and analysis model, as well as the choice of imaging 
paramaeters [7].  However, the sequence parameters can be chosen to minimize the 
influence of water exchange (eg short TR sequences) [7, 9]. 
 
 Overall, steady-state T1 methods, using long-lived intravascular contrast agents 
have the advantage of high spatial resolution due to the ability to measure over a longer 
period of time.  However, due to lack of FDA-approved long-lived intravascular T1 
contrast agents for CBV measurements in patients, these type of studies are presently 
limited to animals.  Finally, the maximum obtainable contrast to noise is limited to the 
size of the space being measured.  For example, in normal brain with a blood volume of 
approximately 2%, contrast differences, when using an intravascular contrast agent, will 
not be much greater than 2%.   
 
2.  DCE (T1) Studies for the Measurement of Brain Vascular Permeability 
 
 There exist two principle approaches to the dynamic imaging of contrast agent 
through the brain.  The first is dynamic contrast enhanced (DCE) approach, which is 
usually assumed to indicate T1-weighted approaches.  The second is dynamic 
susceptibility approach (DSC) which is typically used to indicate a T2 or T2* weighted 
approach.  Here we describe the basic principles of DCE-MRI as used in the brain.  
 
 Dynamic contrast-enhanced MRI (DCE-MRI) is the acquisition of a time-series of 
MR images before, during and after the administration of a T1 contrast agent.  Unlike 
conventional contrast agent enhanced MRI, which simply provides a snapshot of 
enhancement at one time point, DCE-MRI provides a fuller description of the wash-in 
and wash-out contrast kinetics within tissue. Often the analysis of such data has taken 
the form of simple descriptors such as time to peak (ie enhancement slope) or peak 
enhancement.  In an effort to provide more quantitative data directly related to 
underlying tissue parameters a variety of pharmacokinetic models have been applied to 
fit the data.  Recently, a consensus was reached regarding a standard DCE 
pharmacokinetic model, the underlying assumptions, definitions and labeling of the fitted 
parameters [10].  Though this consensus model makes certain assumptions, such as a 
negligible vascular space, which does not always apply [11], it serves as a good 
reference point for all subsequent DCE studies.  
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The general approach to the collection of DCE data is to use a fast gradient-echo 
T1 weighted sequence.  Typically a three-dimensional spoiled gradient-echo image with 
short TR (TR < 7msec), minimum TE (TE < 1.5msec) and low flip angle (≈ 30o) is used 
[12].  The images are acquired every few seconds to minutes.  Improved quantitation of 
estimated gadolinium concentration requires the acquisition of a pre-contrast T1 map.  
For these pharmacokinetic models, a measure of the arterial input function (AIF) is also 
required.  To obtain the AIF the measurement protocol must have sufficient temporal 
resolution [13], especially when the contrast agent is administered as a bolus.  Often the 
AIF cannot be measured directly and a common AIF is used.  However, determination 
of individualized AIFs, has been shown to improve study reproducibility [14].  

 
The resulting DCE signal intensity measurements of the tissue reflect a 

composite of tissue perfusion, vessel permeability, and the volume of the extravascular-
extracellular space (EES).  While the vast majority of studies using the DCE approach 
have been outside the CNS (eg [12, 15-17] ), a few studies have used DCE-MRI for 
evaluation of brain tumors [11, 14, 18]. In the brain DCE is only useful in pathologies, 
such as brain tumors, where the blood brain barrier is disrupted and the Gd contrast 
agent extravasates. Thus, only under these conditions can the DCE approach provide 
measures of vascular/BBB permeability.  
 

3. DSC (T2, T2*) Studies for the Measurement of CBV 
 

 In 1990, Rosen et al [19] demonstrated that if a bolus of a Gd (gadolinium)-
chelated contrast agent was administered, and images acquired during this 
administration, a transient decrease in signal intensity occurs.  This transient signal 
decrease could be converted into a concentration-time curve, from which cerebral blood 
volume (CBV) could be computed for each image pixel, thus providing a CBV image 
map.  Since the arterial contrast agent concentration is typically not measured, these 
maps show relative CBV values and are therefore usually termed rCBV maps.   
 

This approach is based on the principle of susceptibility contrast. Specifically, if a 
high concentration of a Gd contrast agent is confined to the vasculature, as is the case 
under bolus conditions and with an intact BBB, a difference in susceptibility or 
“magnetizability” between the vessel and tissue occurs.  The resulting susceptibility 
gradient induces a transient decrease in the signal intensity, which is proportional to the 
fraction of blood volume within the image pixel. This susceptibility effect, which results in 
a signal decrease, is obviously different from the increased brightness observed on 
standard MRI images where T1 or relaxivity effects dominate.  By using this dynamic 
susceptibility contrast (DSC) MRI method, the differences between gray and white 
matter can be distinguished since gray matter has about twice the blood volume as 
white matter. This is the method that was used to create the first MRI image of 
functional activation in the brain [20].  Several groups are also using this approach to 
evaluate rCBV in brain tumors [21-32].  Preliminary findings suggest that MRI-derived 
rCBV may better differentiate histologic tumor types than conventional MRI  and provide 
information to predict glial tumor grade [22, 23, 30, 33-36].  
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 A typical rCBV image protocol lasts only about 1-3 minutes, with images 
collected approximately every 1 second throughout this time period.  For the first 30-60 
seconds baseline images are acquired.  Next, a bolus of contrast agent is administered 
while the collection of images continues both during and after contrast-agent 
administration.  To create the rCBV maps the signal versus time data is converted into 
T2 relaxation rate (∆R2) versus time data, which is proportional to tissue contrast agent 
concentration.  This data is then integrated (added up over time) to give rCBV for each 
image pixel.  This describes the most basic implementation of a DSC rCBV protocol and 
the data analysis.  Though seemingly simple there are several issues regarding 
implementation and analysis that must be considered in order to appropriately use 
these methods.  Several of these issues are briefly discussed here. 
 
 To acquire DSC image data, fast imaging techniques are required.  In most 
cases, echo planar imaging (EPI) methods are used.  Though some have used fast 
gradient echo methods such as FLASH [25, 26, 28] the time resolution is not as good 
compared to EPI methods, and therefore the quality of. the FLASH data is less than that 
of EPI.  Most, if not all, newer clinical MRI systems have the high-speed (EPI) 
capabilities.  
 
 There also exists a choice in the type of EPI sequence to use.  Investigators use 
either gradient-echo (GE)-EPI techniques or spin-echo (SE)-EPI techniques, or an 
image sequence that acquires both GE and SE data [30, 35].  The difference between 
GE and SE methods is their sensitivity to vessel diameter.  While GE techniques are 
equally sensitive to all vessel diameters, SE methods have a maximal sensitivity to 
microvessels [27].  Thus, when collecting both GE and SE data, maps of total and 
microvascular blood volume can be determined.   
 
 The image sequences used are T2 or T2* weighted so that they are sensitive to 
the susceptibility effect described above.  To maximize this sensitivity attention must be 
paid to the choice of imaging parameters.  Detailed analyses of the signal to noise ratio 
of rCBV maps, and its dependence on the choice of experimental parameters and 
processing strategies, has been undertaken [27, 29]. Briefly, to maximize the signal to 
noise ratio of the rCBV maps it was recommended that the input bolus duration be as 
short as possible, that a sufficient number of baseline images are collected, and that the 
imaging parameters (TE, TR) be optimized for the dose of contrast agent.  In addition 
straightforward integration of the signal time course, rather than a gamma-variate fit of 
the time course seems most reliable.  
 
 Additional issues arise when using DSC methods to determine rCBV in brain 
tumors.  In particular, determination of brain tumor rCBV from the contrast-enhanced 
MRI signal can be complicated by a leaky blood-brain barrier, as is often the case with 
tumors.  Under these conditions, contrast agent leaks out of the vasculature into the 
brain or tumor tissue.  This leakage effect may lead to an underestimation of rCBV for 
two reasons.  First the gradient of susceptibility may be reduced leading to a reduced 
T2* effect.  Second, a decrease in the tissue T1 will compete with (or diminish) the 
decrease in signal due to decreased T2. Several strategies have been proposed to 
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diminish the T1 leakage effect. Some have used T1 insensitive sequences, such as low 
flip angle or dual echo approaches [22, 37, 38] or presaturation of the EES with the 
administration of a pre-injection dose of contrast material [30, 35, 39].  Others have also 
applied post-processing correction algorithms [30, 35, 37, 40].  Though the leakage 
effect acts to confound the rCBV measurement it can also be used to provide 
information about the aggressiveness of tumors or the effects of therapy (eg [41]).  
 
4. Steady-State (T2, T2*) Studies for the Meausurement of CBV and Vascular 

Morphology 
 Contrast agents that have much larger magnetic moments and magnetic 
susceptibilities than the tissues in the body are called susceptibility contrast agents.  
When compartmentalized a susceptibility gradient is set up between the compartment 
containing the contrast agent and the compartment without the agent.  Thus diffusion of 
water molecules through these gradients alters the phase of the associated proton 
transverse magnetization thereby promoting dephasing and a decrease in T2 or T2*.  
Consequently these susceptibility agents are also often referred to as T2, T2* agents.  
(This describes the same fundamental principle underlying the DSC studies described 
above.)  Either superparamagnetic or highly concentrated paramagnetic contrast agents 
can be used as susceptibility contrast agents.  DSC studies described above are based 
on using a high (ie bolus) dose of Gd-chelated contrast agent.  Here we describe use of 
the longer-lived superparamagnetic contrast agents such as MION [42] or AMI-227.   
The plasma half-life of the agents in rats can be several hours. 
 The iron oxide agents have been used by many groups to image CBV changes in 
brain with activation (eg [43-45]) and to monitor changes in brain and tumor blood 
volume [46, 47].   In addition by collecting both T2*-weighted and T2-weighted images, 
using GE and SE sequences, an index of mean vessel diameter can be measured [48, 
49].  These measurements have been shown to be useful in characterizing brain tumor 
growth and response to therapy [46]. 
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