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Abstract 

 
The Bloch equations, that describe the behavior of a magnetization vector in the presence 

of magnetic fields, play a great role in MRI simulation. Indeed, these equations have been 
used in 1984 to design the first MRI simulator and are still the core of the most advanced 
MRI simulators. In the first part of this tutorial, we present the Bloch equations and we detail 
their discrete time solutions that are implemented in MRI simulators. In a second part, as an 
example of advanced MRI simulation, we focus on the SIMRI simulator [1]. We give an 
overview of its organization, of its object modeling, of its field modeling and we comment 
many examples of simulations. 
 

1. INTRODUCTION 

The simulation of Magnetic Resonance Imaging (MRI) is an important counterpart to MRI 
acquisitions. Simulation is naturally suited to acquire understanding of the complex MR 
phenomena [2]. It is used as an educational tool in medical and technical environments [3, 4]. 
MRI simulation also permits the investigation of artifact causes and effects [1, 5-7]. Likewise, 
MRI simulation may help in the development and optimization of MR sequences [5].  

With the increased interest in computer-aided MRI image analysis methods (segmentation, 
data fusion, quantization ...), there is a greater need for objective methods of algorithm 
evaluation. Validation of in vivo MRI studies is complicated by a lack of reference data (gold 
standard) and the difficulty of constructing anatomical realistic physical phantoms. In this 
context, an MRI simulator provides an interesting assessment tool [8] since it generates 3D 
realistic images from medical virtual objects perfectly known.  

The Bloch equations, that describe the behavior of a magnetization vector in the presence 
of magnetic fields, play a great role in MRI simulation. Indeed, these equations have been 
used in 1984 to design the first MRI simulator [9] and are still the core of the most advanced 
MRI simulators. 

The first MRI simulator was proposed in 1984 by Bittoun et al. [9]. Based on the discrete 
time solution of the Bloch equations (See section 2.2 ), it enables 1D MRI simulation from a 
1D discrete object that is defined at each voxel by the proton density ρ and the two time 
constants T1 and T2. The global MRI signal is obtained by discrete summation of all object 
magnetization vectors. In 1995, using a similar strategy, Olsson et al. [6] performed 2D MRI 
simulations. Few years later, the MRI simulation capability was extended by a distributed 
implementation proposed by Brenner et al. [5]. In 1999, Kwan et al. [10] achieved simulation 
of 3D brain MRI images. Their simulation is still based on Bloch equations, but in order to 
face the simulation time problem, the object description is done through tissue template. Each 
template gives a tissue description through a high number of isochromats with their associated 
(ρ, T1, T2) values and resonance frequency. The images are then formed by weighing the 
tissue distribution for each voxel with each tissue signal computed using the Bloch equations. 
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This approach is very interesting regarding the simulation of intra-voxel heterogeneities. But 
it does not simulate the whole image formation process and as a consequence, it is not 
possible to simulate the artifacts associated to the coding gradients. Recently, using a multi 
component object model, Yoder et al. [7] and Benoit-Cattin et al. [1] proposed simulators that 
simulate properly the chemical shift artifact and that take into account the field default 
associated to the object to simulate MRI images with susceptibility artifact.   

 
In the first part of this tutorial, we present the Bloch equations and we detail their discrete 

time solutions that are the core of the current MRI simulators. In a second part, as an example 
of advanced MRI simulation, we focus on the SIMRI simulator [1]. We give an overview of 
its organization, of its object modeling and of its field modeling, and we comment many 
examples of simulations. 

2. BLOCH EQUATIONS 

2.1 General expression 
The Bloch equations [11], used for MRI simulations, give the time evolution of a spin 

magnetization vector T
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r
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where M0 is the spin magnetization equilibrium value which depends of the proton density 
ρ, (T1, T2 ) are the relaxation constants and γ is the gyromagnetic constant of the considered 
isochromat (42.58 MHz/T for the water proton). The local magnetic field B is modeled as 
follows:  
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where B0 is the main static magnetic field, )(rB r
∆ is the local field inhomogeneities, )(tG

r
is 

the applied field gradient, )(1 tB
r

 is the RF pulse and Tzyxr ),,(=
r  is the spatial coordinate. 

2.2 Discrete time solution 
The MRI simulation kernels implement a discrete time solution of the Bloch equations [9] 

by the means of rotation matrices and exponential scaling depending on the magnetic events 
of the MRI sequence. The magnetization vector evolution is iteratively computed according to 
the following equation: 
 ),(..).().(),( trMRRRotRotttrM RFrelaxizgz
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where )(θzRot  is a rotation matrix about the z axis associated to the angle θ  by: 
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where gθ  is linked to the applied gradient )(tG
r
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where iθ  is linked to the field inhomogeneities by: 
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trBi ∆∆= ).(. rγθ  (6) 

where Rrelax describes the relaxation effects by: 
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and where RRF represents the rotating effect of an RF pulse of phase angle φ leading to a 
flip angle α in a time τ. When no gradient are applied during the pulse RRF is given (Eq. 10) 
by a combination of rotating matrixes about z and x axis [12]: 

)().().( φαφ −= zxzRF RotRotRotR  (8) 

When the local experienced field is different from B0, an effective flip angle α’ is obtained 
locally at each position and the RRF operator takes the general form given by Eq. 11. 
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where the effective flip angle α’  is given by: 
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where ω∆ is local value of the frequency offset ),( trrω∆ which is linked to the local field 
value (Eq. 2) by: 
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2.3 Illustrations 
From Eq. [3], one can easily implement three different functions that correspond to 

application of RF pulse, application of gradient, and delay (i.e. spin magnetization 
relaxation). Figure 1 shows the evolution of four magnetization vectors during a spin echo 
sequence. Such kind of 1D simulation has mainly interest for pedagogic purposes. 

 

   
a) b) c) 
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d) e) f) 

 
Figure 1: Illustration of 1D implementation of discrete time solution of Bloch equations. It 

illustrates the evolution of 4 magnetization vectors during a Spin Echo sequence. a) 
Equilibrium position. b) Position after a 90° RF pulse. c) Dephasing observed after 

application of a gradient along x direction (note that the dephasing due to T2* is not 
represented). d) Position after a 180° RF pulse. e) Rephasing after a gradient equal to the 

one applied in c). f) Position after a relaxation time. 

3. THE SIMRI SIMULATOR 

To illustrate the capability of MRI simulation based on Bloch equations, we give an 
overview of the SIMRI simulator [1] and present some results of 2D simulation like brain 
images obtained from the McGill Brain phantom [10] and images impacted by susceptibility 
artifact. 

 
The SIMRI simulator is a recent 3D MRI simulator that proposes an efficient management 

of the T2* effect and integrates in a unique simulator most of the simulation features that are 
offered in different simulators. It takes into account the main static field value and enables 
realistic simulations of the chemical shift artifact including off-resonance phenomena. It also 
simulates the artifacts linked to the static field inhomogeneity like those induced by 
susceptibility variation within an object. It is implemented in the C language and the MRI 
sequence programming is done using high level C functions with a simple programming 
interface. To manage large simulations, the magnetization kernel is implemented in a 
parallelized way that enables simulation on PC grid architecture. Furthermore, this simulator 
includes a 1D interactive interface for pedagogic purpose illustrating the magnetization vector 
motion (as illustrated Figure 1) as well as the MRI contrasts. 

3.1 Simulator overview 
The simulator overview is given in Figure 2. From a 3D virtual object, the static field 

definition and an MRI sequence, the magnetization kernel computes a set of RF signals, i.e 
the k-space. 
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Figure 2: SIMRI Simulator overview. 

 The 3D virtual object is a discrete description of a real object spin system [12]. Each voxel 
of the virtual object contains a set of physical values that are necessary to compute the local 
spin magnetization vector with the Bloch equation. These values are the proton density (noted 
ρ), the two relaxation constants (T1 and T2). Moreover the type of proton must also be defined 
as the simulator takes into account the precession frequencies which are different for fat and 
water protons. A local main field inhomogeneity B∆ is also associated with each virtual object 
voxel (Eq. 13). B∆  corresponds to the sum of the field variation due to tissue susceptibility 
(∆Bs) and other sources such as permanent field inhomogeneities (∆B0). It is assumed to be 
constant within a voxel.   
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where Tzyxr ),,(=
r  is the spatial coordinate.  

 
The intra-voxel magnetic field inhomogeneity is modeled by ∆Bi which is linked to the T2*  

by the relation   
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. This leads to a weighting of the magnetization vector 
amplitude by 

tBie ∆−γ
which is known as the T2* effect. 

 
Four types of events can be chained to build MRI sequences:  The free precession, the RF 

pulse, the application of gradients and the acquisition of the signal. These events are taken 
into account by the magnetization kernel that implements the discrete time solution of the 
Bloch equations detailed in section 2.2. 

 
The RF signal acquisition corresponds to the signal reception by two orthogonal coils 

placed in the x,y plane of the magnetization state of the object after a given excitation. The 
RF signal is a one dimensional discrete complex signal that will fill in respect with the 
excitation sequence one line of the k-space volume. One point s[t] of the RF signal is 
obtained by summation of the local magnetization over the entire virtual object (Eq. [14]). 
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The next point is obtained after an evolution of the local magnetization respecting Eq. [3] 
with a time step ∆t equal to the sampling period of the signal. 
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To simulate realistic images, noise can be added to the k-space, which can be filtered like 
in a real imager before the reconstruction of the MR image (Modulus and phase) using fast 
Fourier transform (FFT) [12]. 

3.2 2D simulations examples 
Figure 3 and Figure 4-a present simulated brain MRI images obtained with a main field set 

to 1.5 T and with a virtual object based on the brain phantom of the McGill brain imaging 
center [13]. Only the label volume defining nine different tissues has been used with a 
variance of the ρ, T1, T2 parameters for each tissue [10]. 

Figure 3-a, obtained with a 2D spin echo sequence, presents a T1 contrast while Figure 3-b, 
obtained with a 2D gradient echo sequence, presents a T2 contrast. 

 

  

a) TE=25 ms TR=500 ms BW=25.6 kHz. b) α =2° TE=4.25 ms TR=25 ms BW=256 
kHz. 

Figure 3: Contrast variation at 1.5 T on a 256x256 brain image. a) T1 weighting using a Spin 
Echo sequence b)T2 weighting using a Gradient Echo sequence. 

Figure 4-a illustrates the simulation results that can be obtained when using a true-FISP 
sequence [14] in presence of field inhomogeneities. Indeed this sequence is very sensitive to 
static field inhomogeneities [15, 16] as underlined by Figure 4-a. Such artifacts are linked to 
the default intensity, the RF pulse angle and the TR. 

Figure 4-b concerns the field inhomogeneity induced by susceptibility variation within the 
object. In this example, we use a 2563 virtual object which is a spherical air bubble (diameter: 
2.5 cm) within water. The precomputed field inhomogeneities [17] are taken into account by 
SIMRI. They introduce in the image geometrical and intensity distortions along the readout 
gradient direction as well as signal loss depending on the sequence used, the main field value, 
the receiver bandwidth or the echo time [18]. With a spin-echo sequence, only geometric and 
intensity distortions appear on the image (Figure 4-b). 
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a) Parabolic static field default. b) Susceptibility effect 

Figure 4: a) True FISP simulation with an RF pulse of 20 ° and 300 µs duration, a readout 
bandwidth BW=256 kHz, TR=4 ms, B0=1.5 T and a parabolic static field default with a 

maximum intensity of 6.10-5 T. b)Illustration of the susceptibility artifact on an air bubble into 
water with a static field of 7T. Spin Echo sequence (TE=20 ms, TR=1000 ms, BW=20 kHz). 

Figure 5 illustrates the possibilities of chemical artifact simulation thanks to the possible 
description of an object by many components. Here, we use two components corresponding to 
the water proton and the fat proton and the virtual object defined as mentioned Figure 5-a.  

By simulation, it is easy to observe the impact of different parameters on the chemical shift 
like the readout bandwidth, the static field, or the image size. Figure 5-b presents a shift 
example at 7T. 

 

AB

C

  

a)  b) BW=25,6 kHz N=256 

Figure 5: a) Virtual object of size 20 cm by 20 cm defined by 256x256 voxels and three 
regions. Region A is composed of 80 % of fat protons (T1=200, T2=750) and 20% of water 

protons (T1=3000, T2=200). Region B is 100% water protons and region C contains no 
proton like air. b) Chemical shift using a Spin Echo sequence with TE=20 ms TR=2500 ms at 

B0=7 T and the virtual object defined in a). 
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4. CONCLUSION 

For twenty years, Bloch equations play a great role in the MRI simulation. Nowadays MRI 
simulators are able to simulate realistic MRI images including artifacts (susceptibility, 
chemical shift, …). However, the amount of spin needed to properly simulate the intra-voxel 
dephasing due to local permanent field inhomogeneity or to simulate the dephasing induced 
by spoilers gradients is huge. MRI simulators must cope with this problem and propose other 
solutions to reduce the computation time. Many tasks are still under development like the 
efficient design of anatomical objects, a better modeling of the intra-voxel inhomogeneities, 
the introduction in the simulation process of antennas properties.  Simulation of the diffusion 
phenomena should be achieved by using the Bloch-Torrey equations [19] with an adequate 
effort on the object model. 

Nevertheless, the simulation of dynamic MRI imaging still appears a complex problem as it 
will requires dynamic modeling of the object and probably an other strategy of magnetization 
computation to avoid huge simulation time. 

Finally it has to be noted that MRI simulation plays a new role by entering within image 
processing algorithm like the correction of MRI artifact [20]. 
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