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Introduction 
Signal intensity from most MR pulse sequences does NOT relate directly to any single 
physical parameter; all sequences have signal which is proportional to proton density, 
PD, and scaled by an arbitrary gain which is scanner, session and object dependant. One 
exception is SSFP (Steady State Free Precession) (also known as FISP - Fast Imaging 
with Steady-state Precession), for which the signal intensity is given by 
 
 
 
 
For flip angle, α, = 90o this reduces to a function of the relaxation times, T1 and T2, only: 
 
 
 
Calculating quantitative parameters, rather than relying on interpretation of the MR 
images themselves, can potentially increased sensitivity to changes associated with 
disease.  It allows quantitative, not qualitative, assessment, with values being compared 
to normal ranges, and should also make results less scanner independent, making 
longitudinal or multi-centre studies much easier. 
 
There are a number of parameters that can be quantified by MR, the most commonly 
investigated being T1, T2, magnetisation transfer related parameters (ranging from the 
relatively simple Magnetisation Transfer Ratio (MTR) to the rate constants and volume 
fractions of the different tissue compartments involved), diffusion parameters (including 
diffusivity and anisotropy), flow and perfusion.  While details will of course be study 
dependant, we will consider examples of T1 & T2, MTR & qMT and DTI measurement 
methods, looking for hints and ‘rules of thumb’ applicable to any quantitative study.  In 
particular, we will aim to show that: 
  

• Acquisition and processing must be considered together 
• Models used in processing must be appropriate 

o two models may give different answers 
o may both be ‘correct’ (in certain circumstances) 
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• Both accuracy (how close the answer is to the ‘correct’ value) and precision (how 
reproducible the answer is) should be considered 

• Effect of noise (& noise propagation) must be understood 
 

Relaxation Times 
The relaxation times T1, T2, T2* describe the behaviour of the magnetization in an NMR 
experiment. They are tissue specific, being related to chemical structure and composition 
of environment and are responsible (along with proton density) for the majority of 
contrast seen in conventional MR images. 

 
T1 - the Longitudinal or Spin-lattice relaxation time - is the time constant for recovery of 
longitudinal magnetisation after perturbation (Fig1 & 2).  
 
T2  - the Transverse or Spin-spin relaxation 
time - is the time constant for decay of the 
transverse magnetisation after an RF pulse 
in a homogenous static magnetic field (Fig 
3); T2* is  the time constant for the same 
decay in an inhomogeneous field. 

 

T1 Measurement 
T1 can be calculated (on a pixel by pixel basis) by curve fitting to measurements from 
multiple inversion times or multiple saturation times, using a sequence with a short TE 
spin echo readout, although the formulae for the inversion recovery become complex 
unless long TRs are used, leading to very long scan times. The long scan times mean a 
potential for movement between scans, but the methods both have good reproducibility 
and accuracy. 
 
T1 can also be computed by directly comparing signal intensity of short and very long TR 
sequence: 
 
 
This two point method is relatively fast, although there is still a potential for movement 
between the scans.  It has reasonable reproducibility, but accuracy is poor. 
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• Decay of the 
transverse
magnetisation after 
a 90o pulse (at long 
TR)
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A number of much quicker T1 measurement methods have also been reported, based on 
FLASH, (eg(1)), EPI, (eg (2),(3)) and Look-Locker methods (which sample the recovering 
magnetisation several times after a single inversion pulse (eg(4),(5))).  Methods are also 
available that use SSFP (eg DESPOT1 and DESPOT2(6), (7), see Fig 4, below). Multi 
inversion recover remains the ‘gold standard’, however, and while other sequences offer 
faster acquisition and better coverage, they usually have lower accuracy, and assume a 
single T1 value (which is generally appropriate in areas of uniform tissue, but can cause 
problems in areas of ‘partial volume’ between tissues, particularly near CSF (Cerebro-
Spinal Fluid) spaces as CSF has a very different T1 value from white and grey matter). 

T2 Measurement 
T2 can be calculated (on a pixel by pixel basis) by curve fitting to spin echo 
measurements from multiple echo times (at long TR).  The measurements can be from 
multiple single echo acquisitions, but this is extremely time consuming, with a high 
likelihood of movement between scans.  The effects of diffusion also vary between the 
acquisitions, potentially confounding the measurement and reducing accuracy.  The 
diffusion confound can be reduced, the scan time shortened, and the possibility of mis-
registration between images removed, by using a multi-echo sequence to collect all TE 
values in a single acquisition.  Such a sequence (often referred to as a CPMG (Carr-
Purcell-Meiboom-Gill) acquisition) has high accuracy and precision, but requires 
extremely accurate 180o refocusing pulses, and can therefore only be implemented in a 
single slice mode, using ‘hard’ pulses, making it extremely inefficient. 
 
T2 can also be computed by directly comparing directly comparing signal intensity of two 
sequences with different TEs: 
 
 
 
This two point method can be implemented by collecting two separate echoes (with the 
potential for motion between scans), or as a dual echo sequence (sacrificing some 
accuracy unless a calibration is performed(8)). Both versions have reasonable 
reproducibility, but do not approach the accuracy of the CPMG sequence.   
 
T2 decay can show non-single exponential behaviour, even in the absence of gross partial 
volume affects as there are multiple compartments within tissue which have different T2 
values.  Partial volume effects are an addition problem, particularly near CSF spaces as 
CSF has a very different T2 value from white and grey matter.  The multiple components 
can be differentiated by a multi echo sequence; this can be used either to reduce/remove 
contamination from an unwanted tissue (eg(9)), or, by using non-negative least squares 
(NNLS) to fit spectrum of T2 values from a large number of echoes (>= 32) to visualise 
the very short T2 component (<=20ms) thought to represent water trapped between 
myelin bi-layers (10)(11))(12). 
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A number of much quicker T2 measurement methods have also been reported, based on 
FLASH, (eg(13) (14)(15)), EPI, (eg (16)).  Methods are also available that use SSFP (eg 
DESPOT1 and DESPOT2).  

• Approx 17 mins total 
for 1mm isotropic 
resolution

Tissue T1 (DESPOT1) T1 (Literature) T2 (DESPOT2) T2 (Literature)
White Matter 621 (61) ms 660 (51) ms 52 (4) ms 76 (6) ms
Grey Matter 1060 (133) ms 1013 (63) ms 83 (7) ms 91 (6) ms
Thalamus 780 (55) ms 758 (24) ms 67 (4) ms 75 (7) ms
Putamen 1014 (101) ms 1035 (75) ms 72 (5) ms 77 (5) ms

Glob. Pallidus 726 (53) ms 783 (46) ms 55 (7) ms 70 (4) ms
Caudate 
Nucleus 1112 (132) ms 1161 (93) ms 77 (7) ms 83 (6) ms

T1 T2

 
Figure 4 – T1 and T2 maps from DESPOT1 &DESPOT2 
 
Multi-echo CPMG recover remains the ‘gold standard’, and, as with T1 measurement, 
while other sequences offer faster acquisition and better coverage, they usually have 
lower accuracy, and assume a single T2 value.  Fast spin echo based sequences (which, 
like CPMG, may reduce the confounds of diffusion) and fast-FLAIR sequences (which 
minimize contamination from the very long T2 of CSF) are available and have been 
shown to have good reproducibility(17), although their use can be controversial(18)(19)(20). 

Magnetisation Transfer 
In many tissues 
there are two (or 
more) distinct 
water 
compartments 
(Fig 5).  
Magnetisation 
transfer sequences 
use the ‘free 
water’ (which has 
a relatively long 
T2 (~50ms) and 
narrow line in a 
proton spectrum (~20Hz), and produces normal MR signal) to probe the ‘bound water’, 
which is invisible on normal MRI because of its very short T2 (<100us) (and 
correspondingly very wide line in a spectrum (>10kHz)).  Off-resonance saturation can 

• Free water 
– produces normal MR signal
– relatively long T2 (~50ms)
– narrow line in spectrum 

(~20Hz)

• Bound water
– ‘invisible’ on normal MRI
– very short T2 (<100us)
– very wide line in spectrum 

(>10kHz)
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irradiate the bound pool without directly affecting free pool, leading to a change in the 
latter’s signal intensity (and T1) in areas where MT occurs. 
 
Henkelmann’s two pool model(21) 
can predict the signal intensity given 
the frequency and power of the MT 
pulse.  Ramani et al (22)(and others) 
have shown that it is possible to 
modify the model to allow for the 
pulsed saturation used in typical in 
vivo experiments, and by collecting a 
relatively small number of images to 

extract physically 
meaningful, 
quantitative, 
parameters, which are 
not pulse sequence or 
irradiation dependant.  
From 6 or more MR 
images, five 
independent quantities - 
RB, RMo

B/RA, R, 
1/RAT2

A and T2
B – can 

be calculated (Fig 7) 
and, with a separate 

measurement of T1 (T1obs), the bound water fraction, f, (thought to represent myelin 
content) can be found.  
 
MT is a good example of the compromises often required, however, as due to scan time 
limitations, it is more common to measure: 
 

• Magnetisation Transfer Ratio (MTR) 
o Needs collection of only 2 images 
o NOT a physically meaningful parameter 
o pulse sequence and irradiation dependant 
o but related to tissue structure 

• ‘forward rate constant’ 
o Needs collection of only 3 images 
o physically meaningful parameter, but assumes complete saturation  

 (impossible to achieve in humans!) 
o related to tissue structure 

Diffusion  
Diffusion is the random translational motion of molecules (water). In a test tube diffusion 
is largely unhindered (free) and isotropic, and is characterised by the diffusion constant; 
in the brain it is restricted or hindered, and is characterised by the apparent diffusion 
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coefficient (ADC). In the brain diffusion may be anisotropic, as barriers to diffusion (e.g. 
axon walls, cellular microstructures) are oriented, so diffusion is characterised by 
different ADCs in different directions. 
 
Any MR sequence can be sensitized to diffusion by adding gradients, although for 
efficiency, and to minimize sensitivity to bulk motion, EPI based sequences are often 
used.  The fullest (simple) description of diffusion is given by the diffusion tensor: 
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The tensor can be calculated from 6 (or more) 
measurements with sensitizing gradients in different 
directions, and can diagonalised to give 
eigenvectors, representing the principle directions 
of diffusion and  eigenvalues, λ1 , λ2 , λ3 
representing the magnitude of diffusion. From the 
tensor, various rotational invariant parameters can 
be calculated including mean diffusivity and 
fractional anisotropy (FA) (Fig 8).  
The quality of the final images is highly dependant on number of averages, and the b-
values chosen, with collection of more than the minimum 6 required directions improving 
the SNR by more than would be achieved by averaging in the same scan time.  The 
optimum protocol depends on what is to be measured (eg single direction ADC, tensor 
for FA, etc …)(23)(24), and, as with MTR, compromises must often be made. 
 
Alternative Diffusion Models 
The tensor is only one model of diffusion.  Experiments have been performed showing 

non-monoexponential decay(25)(26), and very different 
ADC and FA values are found depending on the b-
value used (Fig 9). Areas where multiple fibres can be 
detected have also been shown , and to allow 

quantification in these cases, 
models other than the diffusion 
tensor have been devised including 
q-space (or more practical 
approximations(27)), PAS-MRI(28), 
and others; Fig 10 shows an 
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example of the (multiple) principle directions of diffusion seen in the pons by PAS-MRI. 

Noise in Magnitude Images 
Noise in magnitude images follows a Ricean Distribution (Fig 9), which tends to a 
Gaussian Distribution at high signal and a Rayleigh Distribution at low intensity.  The 
background noise has a non-zero mean (mean = 1.253σ; s.d. = 0.655σ, where σ is ‘true’ 
standard deviation of the  noise in real (or imaginary) data)(29). This means that at low 
values (as often occur in diffusion, and other quantitative measurements) the intensity of 
images are artificially increased, and this must be allowed for in any fitting procedure (eg 
by fitting to the square of the image intensity(30)). 

General Suggestions for Quantitative Mapping 
Similar trade off occurs when measuring most parameters; multi point methods are slow 
but accurate (and accurate over a range of values), while two point methods are faster, 
but inherently assume single component to decay and are accurate only over a limited 
range.  When setting up a quantitative measurement protocol (for any measure), the size 
of feature to be measured must first be considered, as this will determines field of view, 
matrix size, slice thickness, etc.  The available scan time then determines the total 
number of images that can be obtained (with these parameters), which in turn determines 
which model(s) can be used.  (Remember that all models have assumptions, and results 
are only meaningful if these assumptions are met).  If, as is often the case, as two point 
measurement must be made, then the echo times (for TE measurements) should be spaced 
to cover the expected T2 value or ranges (with one as short as possible and one at, or just 
above, the expected T2); the TRs, for T1 measurement and b values for ADC 
measurement follow similar principles.  As many averages as scan time allows should be 
collected, and these should be distributed in proportion to give both (all) images similar 
final SNR (for single component decays (T1, T2, ADC …), extra points on a decay curve 
are less useful than extra averages of points at the extremes). 
 
Finally, always run a pilot set of scans and check the results look ‘reasonable’ and also 
always check scan-rescan reliability! 
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