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1 Introduction

Registration is a widely used and essential tool in imagfrajldorms, and especially in medical imaging. A great
deal of effort and research has gone into developing regjistr methods to align images of various types. This
talk aims to introduce the basic concepts behind registratiarticularly the fully automatic registration methpds
as applied in medical imaging. Because of the great varifedpproaches used, it is necessary to only concentrate
on a few here, but many surveys, reviews and textbooks aaybdth broad [14, 15, 20, 23, 28, 37, 41] and more
specialised [2, 9, 10, 16, 24, 25, 26, 31] topics in medicagmregistration exist for the interested reader.

The basic registration task is to take two images (either 2B images) and align them. That is, spatially
reshape one to match the other. This is done by finding a sakttip between the voxel locations in the two
images. Once this relationship is known, the information@atesponding locations can be combined, allowing
fusion or comparisons of the two images.

For example, the information from different images (sucff dsveighted and T2-weighted MR images) can be
combined, allowing features visible in one modality to bersen top of features visible in the other. Another
example is in functional MRI where the functional, low-reg®mn activations can be related to the anatomical
structures seen in a separate high-resolution structnegé of the same subject.

Registration is also useful for comparing images of the samdality that are taken at different times. For
instance, longitudinal studies of disease (e.g. Multiglle®sis, Alzheimer’s, etc.), studies looking at anatahic
variation between groups (e.g. Schizophrenia), motiomection of functional/dynamic images, and pre- and
post-operative comparisons are all cases where registrigtiessential in the process of analysing the images to
look for differences. In fact, the spatial relationshipgabtished by registration are often the quantities of most
interest as they allow changes in shapes and volumes to berdejuantified directly.

Finally, consider two areas where registration is paréidylimportant and challenging. The first is the area of
functional imaging (fMRI) where geometric and intensitgtdirtions in the functional images and anatomical vari-
ability between subjects make both functional to strudtamd structural to standard-space registrations extyemel
difficult. The second challenging area is in surgical plagrind assistance, where deformation of the patient’s
anatomy occurs and real-time updating is needed for sugjedhe operating room.

Registration is therefore an essential tool in a wide rarfgaexical imaging scenarios. Some aspects of reg-
istration are relatively well understood and methods ekiat perform very well (e.g. rigid-body registration of
intra-modal brain images) whereas other aspects are ostl\bpcoming possible (e.g. real-time surgical assis-
tance) or are currently evolving (e.g. inter-subject corgoms). An understanding of the fundamental principles
of registration and what limitations exist in the methodsdis important in order to utilise medical imaging in a
careful and quantitative way, either in a research or addirgetting.

2 Basic Registration Components

There are two main categories of registration method: feabvased and intensity-based. The feature-based meth-
ods use either manually or automatically extracted feat(welandmarks) from the images and align these fea-
tures. In contrast, the intensity-based methods use alldkel intensity values to determine the alignment of the
images. The intensity-based methods are more common aiprasd it is these methods which will be described
herein, although interesting developments in featurethasethods are still being made (a recent example is [33]).

For intensity-based methods, the vast majority are basdtirer simple components: specifying the allowable
transformations; choosing a way of measuring the simyldréttween transformed images; and choosing a way to
search for the transformation that gives the best simjla#ih understanding of this material is important for peo-
ple that use registration methods, as well as those thatafetreem, since many registration applications require
the selection of the correct options within these compaenbrder to work well. Therefore these components,
and the options within them, are what is described in the sestions.



2.1 Transformations

A spatial transformation is what is applied to an image ineorttd change the position, orientation or shape of
structures (such as the brain) in the image. Mathematidalyexpressed as a set of equations relating the old
image positions (coordinates) to the new ones. These eqsateed to be restricted in some way in order to limit
the possible deformations of the images. It is importantidasstand these restricted models of transformations
(e.g. rigid-body, affine, viscous-fluid) as they determine physical model for the deformations — either due to
changes in the anatomy or in the imaging process (e.g. geordestortions). For instance, rigid-body transfor-
mations do not allow the size or shape of any structures togdhand so are useful for intra-subject registrations
but not for inter-subject registrations where size and staap different.

The transformation model is often described by its Degrdds€&@dom DOF), which is the number of indepen-
dent ways that the transformation can be changed. For eeamghsider translations (shifts) in 3D. There are
three independent translations (one:jrone iny and one irz) making this a 3 DOF transformation model.

In general, increasing the number of DOF allows the tramsé&tions greater scope to make one image match the
other. The three most common models of transformations im@D rigid-body (6 DOF), affine (12 DOF) and
non-linear (anything from 12 to millions of DOF). These misdre now described in more detalil.

2.1.1 Rigid Body Transformations

The rigid-body transformation model only permits rota@nd translations. In 3D it has 6 DOF: three rotations
(one about each axis) and three translations. This fullgritess the type of movements that a rigid-body (one
that does not change shape) can undergo, and so it is a goad aidaw a rigid body-part (e.g. brain or pelvis)
can move. See figure 1 for some examples of rigid-body tramsftions of a brain image.

This transformation model does not allow any structuresiwithe image to change size or shape and therefore
should only be used when this is known to be true, such as fagéws of the same subject where no anatomical
changes are expected. Note that for articulated body-fagsthe spine), a separate rigid-body transformation
might be a good model for each part (e.g. vertebra), but mahBwhole object.

2.1.2 Affine Transformations

The affine transformation model permits all linear coortir@hanges: that is, rotations, translations, scalings and
skews (or shears). In 3D this gives a total of 12 DOF: 3 trdiwsia3 rotation, 3 scaling and 3 skew parameters.
See figure 1 for example transformations. Note that thisiohes, as a sub-class, all rigid-body transformations.

This transformation model allows both size and shape chémgall structures in the image. However, these

changes are global across the image and it does not, for égaatipw one shape to increase in size while others
stay the same size or decrease in size. Therefore this aramstion model will not allow accurate registrations

of images where, for example, only one has ventricular gelaent. The most common use of affine transfor-
mations is in registering images to an approximate commpostémdard) space (e.g. Talairach space [35]) or for
compensating for geometric image distortions, such astbassed by eddy currents in diffusion imaging [27].

2.1.3 Nonlinear Transformations

The non-linear transformation model includes all transfations that do not fit into the affine transformation
model. Hence, it encompasses a very wide range of transframsgrom those that are nearly linear, with few
DOF, to the most general transformations which have a sepdigplacement (3 DOF) for each voxel, giving well
over a million DOF for typical images. In principle, thesghér DOF transformations allow any geometric change
between images to be modelled although typically some cainss are still applied to prevent non-physical trans-
formations from occurring (such as changes in topology).

Many non-linear transformation models are based on vameathematical or physical models. These models
generally control the DOF and the smoothness availableetaréimsformation, and hence control how well they
can align or reshape an image to match another. Some comrampées of these models are:

Basis Functions: the transformation is made up of sums of simple functiong. @lynomials in AIR [40], or
sinusoids in SPM [11]). The number of basis functions cdatifte DOF (usually in the hundreds) and the
smoothness, since the lower-order basis functions ardlyismeanged to be the smoothest.

Splines: the transformation is built from simple piecewise terms specified by values at knot or control points.
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Figure 1: Various examples of affine transformations of dginal image (left). Note that, for the affine case,
these individual transformation types can be mixed in amenfe.g. scalings and rotations and skews). Rigid-
body transformations are a sub-set of affine transformstma include rotations, but not scalings or skews.

The number of control points specifies the DOF (typicallyusends) and the spacing effects the smooth-
ness. Common examples include B-splines [32] and thireplines [4].

Elastic-solid: the transformation is modelled as the deformation of artielsslid [6, 21]. The material properties
(e.g. Lamé coefficients) control the smoothness and thectafe DOF (note that the effective DOF is
less than the nominal DOF, especially if the smoothnesggis Which implies that the parameters are not
independent). These models typically have very high nohd@ (millions or more) and can model small
changes very accurately, but may have problems with larfgrmations where the internal elastic energy
pulls the image away from the best matching transformatiote that bio-mechanical models [13], often
used in surgical applications, are a prime example of tige tf model, where the elastic energy also has a
physical meaning.

Viscous-fluid: the transformation is modelled as the deformation of a wisdtuid which relaxes over time [7,
8]. The viscosity parameters control the speed of conveént may not effect the final smoothness,
depending on the number of iterations and the stoppingiait&hese models have very high DOF (more
than the effective DOF of most elastic-solid models) and $omoothness constraints, allowing them to fit
to almost any possible image deformation.

Smoothed displacement fieldshese model are more general than the others, often allo®/iD@F per voxel
(for a total of millions of nominal DOF). However, a smootgiparameter is used to control the smoothness
directly and the effective DOF implicitly. One example instisategory is the ‘Demons algorithm’ [36].

Several other categories exist and many more examples bbaein these categories can be found in any of the
general references [14, 15, 20, 23, 28, 37, 41].

In general, non-linear transformations with very high DOE aseful for medium to high resolution images with
good contrast and little or no artefacts, where the subténghs in anatomy can be seen. For other situations
where the internal details are indistinct or significaneirgity changes are induced for other reasons (such as
BOLD changes or artefacts) it is often more appropriate ®lager DOF non-linear or affine transformations,
as these are less sensitive to poor image quality (inclugitefacts) and hence more robust. However, the final
choice of transformation model must be made according td sgecific acquisitions are available and the desired
application, where other issues may also be important.



2.1.4 Interpolation

All images are acquired and stored as a collection of disquetnts set on a spatial grid. However, in order to
carry out the image transformations the intensity at pms#tibetween grid points needs to be calculated. This
process is called interpolation.

As an illustration, consider interpolating a one-dimenaissignal using a linear interpolation method. The aim
is to calculate the intensity at any location between thepdamoints. (One reason to want to do this would be
to effect a sub-voxel — i.e. very small — translation.) To Hdst the two nearest samples are chosen, and a
hypothetical line is constructed between the intensitidlsese points so that the intensity at any point in between
can be found. This is illustrated in figure 2.

Initial Data Points Interpolant Resampled Interpolant

Figure 2: A one-dimensional linear interpolation. The figftire shows the original discrete samples. Inthe middle
figure the original samples are connected with lines (heineat interpolation) — forming the interpolant. This
interpolant is then resampled at the new points (open eiycédfectively performing a sub-voxel translation.

Several different methods of interpolation exist and eacidpces slightly different results. Some of the most
common methods in three dimensions are: nearest neightaier the value of the nearest original neighbour),
trilinear (the three-dimensional extension of the onedtisional linear interpolation example given above), sinc
(an interpolation function commonly applied in image psirg) and spline-based (smooth forms made from
simple piecewise segments). Note that both sinc and splsed interpolations use information from outside the
immediately neighbouring voxels. As a consequence theyncdide more information about the image structure
and can produce sharper images, but take longer to calculate

When the precise value of the intensity at a point in the imag®portant, as it is in motion correction of fMRI
volumes, the choice of interpolation can be significant. sy, for many registration applications it is sufficient
that the interpolated intensity be similar to surroundisgite, allowing for some small interpolation inaccuracies
Therefore, the choice of interpolation method is usualliarnitical as long as it is smooth or continuous. Hence,
for registration, trilinear interpolation is commonly aiselue to its simplicity and speed, while nearest-neighbour
because it is not smooth, is generally avoided. Furthernitdeecommon to apply a more accurate interpolation
method (e.g. spline) in the final image transformation (rgdang) while using a faster method (e.g. trilinear) for
the main registration calculations.

2.2 Similarity and Cost Functions

Once the transformation model and interpolation methoa Hmeen selected, it is necessary to define a global
measure of similarity between the images. That is, a funatibich will quantify how similar the images aaéter

a spatial transformation has been applied. This is done figidg a similarity function where better-aligned im-
ages give larger values (alternativelgaat function can be used, where better aligned images give smaller yalues
Given a similarity function, the registration problem idvem by systematically trying different transformations
in turn, to find the one which gives the maximum similarityuel

It is not essential for users of registration methods to wstdad the precise details of the similarity function
calculations. However, it is essential to understand wbinds are appropriate in a given situation (e.g. that least
squares, mean absolute difference, mean square diffeegnitaormalised correlation shoubtly be used for
intra-modal registrations). Therefore the details presented in thé sestions can be skipped on a first reading,
but note should be taken of the appropriate usage conditiahsire required for each similarity function.

One of the greatest challenges for fully automatic redistnamethods is the definition of a sensitive but robust
similarity function. The first consideration when choosagimilarity function is whether registration is between
two images of the same type (intra-modal) or different tyfeter-modal). With intra-modal registration, one can
normally assume that the two images will look fairly simikfter correct registration — maybe just a change in
overall brightness and contrast is necessary. Howeveheidatter case, one cannot assume that a given tissue
type will have the same image intensity in each image. Fdeit®, consider registering a T1-weighted MR
image with a T2-weighted image. In the T1-weighted imagedB& has a lower intensity than the white matter,



whereas in the T2-weighted image its intensity is highere Tihknown intensity transformation then becomes a
confounding factor to be dealt with by the similarity furoeti

2.2.1 Intra-modal

For intra-modal image pairs, a given tissue should map tedhge (or similar) intensity in each image. Therefore,
the similarity can be measured by looking at the differerfdatensities at corresponding voxels. Consequently,
cost functions such as the mean absolute difference or nupemesd difference (often called ‘least squares’) can
be used — see appendix A. Note that since both positive aratineglifferences represent non-similar intensities,
the absolute value or squared value of the difference is.Fgdre 3 shows an image pair in several alignments
together with the difference image.

One problem with using the difference between images as iéasityymeasure is that the overall intensity level
and contrast can vary (see figure 3) if, for instance, chamgssanner calibration occur. This means that there
will be on overall bias in the difference image which can fesua poor registration being found. A way of
overcoming this problem is to use a similarity function whis normalised so that global changes in brightness
and contrast (global offset and scaling of intensity) doaf@nge the similarity value. An example of this type of
similarity function is normalised correlation. This is edjto the usual statistical covariance meast€liy Iz } —
E{I.}E{Ip}) divided by the standard deviation of the intensities inheiadividual image. It is the division by
the two standard deviations that compensates for globlhgaahile the correlation itself is unchanged by global
offsets.

Image A Image B Difference Image

Figure 3: An example showing the difference image formeddwerl image pairs. Each row contains an image
pair (Image A and Image B) together with the correspondiffgdince image (Image B - Image A), where light
and dark areas in the difference image represent posittveegative values, respectively. The top two rows show
the effect of a large and small rotation while the bottom rinvve the effect of a change in intensity brightness
and contrast. Of these, the middle difference image hagts tleviation (positive or negative).

2.2.2 Inter-modal

For inter-modal image pairs, the intensities associateh thie various tissue types can be completely different
from one image to another. However, within an area that dositasingle tissue type the intensity should be nearly
constant. This is true for each image, although the meansitieof this area in each image is likely to be very
different. For example, consider some tissue, say greyemalhe intensity in one image might k600 + 10,

so that any intensity near 1000 in the first image would be tilaely to correspond to grey matter, whilst in the
other image it might bé00 + 5, a very different intensity, but again the intensity of &k tgrey matter within this
image is nearly constant.



This observation is the basis of the Correlation Ratio [8@jich initially performs a segmentation of one image
into areas of similar intensity. This segmentation is doynbibning the intensity values as would be done to create
a histogram. A bin number is assigned to each location (ypgelthat all locations with the same bin number
should correspond to the same tissue type. For examplesitiypa bin width of 50 would assign all locations
with an intensity value between 1 and 50 to bin 1, between 81180 to bin 2, between 101 and 150 to bin 3, and
so on. The wordireas will be used here to denote the set of locations with the samaulmber (see figure 4).
These areas represent spatial regions.

Each area is then mapped onto the second image, and thdtieteimside each area examined. These intensities
in the second image should be approximately constant iftiagé is aligned well, as each area should contain the
same tissue type. However, if the images are poorly alignecktare likely to be several tissue types in any single
area. Therefore, the similarity function is based on howImthe intensity of the second image varies within each
of the areas. Note that although the first image may be ogmested (that is, a given tissue type may be split
into more than one area) this does not matter since, if tiga@ént is good, the corresponding intensities in the
other image will still be approximately constant, whilelietalignment is poor, they will fluctuate greatly since
the areas will cross tissue boundaries.

Image Areas Area l Area 3 Area 4

Figure 4: An illustration of the spatial areas formed by lirgnthe intensity values. On the left all the bins are
shown in the one image, represented by different shadesgfghile in the four images on the right, each area
is shown separately in white. For this example only four lvilese used, whereas in practice often hundreds are
used.

More precisely, it is the variance of the intensities forleacea in the second image that is of interest. For the
Correlation Ratio (a similarity function — see appendix A¢ tvariance in each area is first weighted by the size
of each area and summed together to give a total (weighte@dnez score. This variance is then normalised by
dividing it by the total variance of the second image, trdate a single area, and then subtracted from one. Once
again this normalisation ensures that the score is unaffdnt any global intensity scalings.

Another commonly used inter-modal similarity function isuMal Information [22, 38], or Normalised Mutual
Information [34], which are based on measuring jthi@t entropy of the intensities. Entropy, a quantity used in
physics and communication engineering, is a measure aftdisca substance with high entropy is one that is very
disordered. Therefore, low entropy represents an ordéretion, and it is the relation between the corresponding
intensities across the two images which should be ordergnthe alignment is good.

In practice, the entropy is measured from the joint histogod the two images. This histogram is formed by
assigning a bin number to each voxel, in each image separatesed on the intensity at that voxel. Then a
two-dimensional array of bins is formed with the bin numlferghe first image along the vertical axis, and those
for the second image along the horizontal axis. This arral@s(unfilled) joint histogram and to fill it requires
looking at a each voxel position in turn, finding the bin numsifeom each image at this position, then adding one
to the cell corresponding to the pair of bin numbers found.

For example, consider a voxel position of (10,3,7). If the humber is 4 at this position in the first image, and
is 6 at this position in the second image, then the cell (©&he joint histogram has one added to it. So, by
starting with zero in all cells, the joint histogram is biilt examining each voxel location in turn (for both images
together) and adding one to the appropriate bin. Figure Wsksome joint histograms formed from an inter-modal
pair of images in various alignments. Note how the dispersitthe histogram entries decreases as the images
become well aligned.

Given the joint histogram, the entropy quantifies how ongd#ré entries are. This is defined mathematically with
both joint and marginal (individual) entropies, which ammbined to form the mutual information measures.
Appendix A contains the mathematical definitions of this #relother similarity/cost functions discussed above.
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Figure 5: An illustration of some typical joint histogramsrined from an inter-modal image pair in various
alignments. The images used have T2 (first column) and Tbisecolumn) weightings and are of the same
individual. Alignment of the images varies from nearly @etf (top row) to poor (bottom row). In each case,
the vertical axis of the joint histogram corresponds to himbers of the first image, while the horizontal axis
corresponds to bin numbers in the second image. Note thheadignment gets worse the dispersion increases,
but even for the nearly perfect alignment there is some digp® In this case the dispersion is due to the fact that
the relationship between tissue type and intensity is ndepebut only approximate.

2.2.3 Summary

Each similarity function makes some assumptions about hevntensities are related between the matched image
pair. These assumed intensity relationships are:

| Similarity/Cost Function | Assumed Intensity Relationship Appropriate Usage |
Mean Square Difference Ip=1I4+¢€ Intra-modal (fixed intensity scaling)
‘Least Squares’
Mean Absolute Difference Ip=1s+c¢ Intra-modal (fixed intensity scaling)
Normalised Correlation Ip=mlgs+c+e Intra-modal (intensities can be scaled)
Correlation Ratio Ip=f(la) +e¢ Inter-modal (e.g. MR-MR)
Mutual Information Ip andl 4 statistically related | Inter-modal (more general)
Normalised Mutual Information

wheree represents image noise (also considered presentin theaMaofarmation cases). This table can be used to
select an appropriate similarity function for given imagesr example, if the two images are of the same modality
(e.g. T1-weighted) and the sequence is identical then anyesity function can be used, although Mean Square
Difference and Mean Absolute Difference may be more sewsit change and more accurate. However, if the
sequence parameters are slightly different (or the scayaieichanges) then Normalised Correlation would be the
most appropriate. If, on the other hand, the modalities dferdnt (e.g. T1-weighted and T2-weighted) thanty
Correlation Ratio and the Mutual Information-based sintiyafunctions can be used. Note that the difference
between these two types is that Mutual Information does mgisti on a strict relationship between intensities
and can be used when the image modalities are extremelyadiffée.g. CT and MR) whereas Correlation Ratio
assumes that if there is no distinction between tissue sittea in one imagel(y) then there cannot be one in the
other image, which is generally true for MR to MR image regisbn, but not for CT to MR.



2.3 Finding the Transformation

Once the similarity function has been chosen, the transiiamthat maximises this similarity must be found. Due
to the complexity of the similarity functions there is udyalo analytical (that is, directly calculable) solution
available, and so the solution must be found by searchinge prbblem of searching for the transformation
parameters that give the best function value (global mawijrie a standard problem in mathematics, called the
optimisation problem. Consequently, there are many diffealgorithms available for solving the optimisation
problem.

A difficulty with optimisation in the context of registratiois that only the global maximum is of interest, not
local maxima, but many optimisation algorithms only aim talfiocal maxima. The difference between a local
maximum and the global maximum is shown in figure 6. As can ka,sthere is only one global maximum for
a function (the single biggest value), which may be hiddearmongst many local maxima. In practice, some
registration methods simply find the nearest local maximanal so rely on starting close enough to the global
maximum, but this can lead to non-robust registration. Teesthis problem in general requires more sophisticated
optimisation algorithms.

Local Maxima

Global
Maximum

Similarity Value

Transformation Parameter (rotation angle)

Figure 6: An illustration, using similarity function valsecalculated for a real image pair, showing both local
maxima and the global maximum.

2.3.1 Optimisation

Searching for the transformation that gives the best siityilaalue (the global maximum) is the task of the
optimisation algorithm. Conceptually, the problem seempke, as it is easy to spot the global maximum in
a graph like that shown in figure 6. However, in practice tRiglifficult because only isolated values can be
calculated, one at a time. Therefore, the overall shape andrgl trends that make it easy to find in the example
figure, are not available to the algorithm.

To illustrate this problem, consider an old sailing ship oastal waters which wants to find the deepest point
within some region. At any particular position that the sisijn, it can measure the depth by letting out a chain
and measuring how far it has to go before hitting the seadpédlly, the depth is unknown at all positions, and the
depth can only be measured at particular positions. Thasig¢essary to start somewhere and then progressively
try new positions until the captain is satisfied that the @sepoint has been found. What makes this search
difficult is that it is largely blind. Given a handful of deptheasurements, the difficult steps are deciding where
to look next and when to stop, therefore assuming that thpeggg@oint has been found. Unfortunately, there is
no general guarantee at any stage that the deepest poimdegsiibeen found.

In this analogy the process of letting out the chain is edeiMao calculating the similarity function. The position
of the ship is equivalent, not to any position, but to a patticvalue of the transformation parameters (for instance,
rotation angles and translation values). That is, the stigorgots to find the position where the depth is greatest,
but the optimisation algorithm needs to find the transforomgparameters that give the greatest similarity. This
makes the problem much harder because for the ship analegywere only two dimensions to search, but for
transformations there are many dimensions (equal to the)m@ieh makes the general scope of the search much,
much larger.

For automatic registration, choosing an appropriate dpétion algorithm is crucial for two reasons. Firstly,
this is the most time-consuming part of the registratiorcpes, and secondly, if the optimisation gives bad results
then the overall registration will be bad, regardless oftelmailarity function and transformation model is chosen.
Therefore, the algorithm should ideally be both fast andisblfi.e. unlikely to give bad results by finding local
maxima).



Although there are many mathematical local optimisatiayoathms available (like gradient ascent, Powell's
method, etc. — see [29] for more) there are few global optitios algorithms. Of these, Simulated Annealing
(also see [29]) is the most well known, and does provide #sttal guarantee of finding the global maximum,
but has the disadvantage that it requires many, many ei@hsadf the similarity function (which takes a long
time) before finding the desired solution. In many casesti®eno standard optimisation algorithm that is suit-
able, and so a custom-made algorithm must be designed ée.§1 8]) to satisfy both efficiency and robustness
requirements, given the particular similarity functioatls chosen.

For non-linear transformations, the problem is even mdifecdit as there are potentially millions of parameters
to find, and any form of search in such a high dimensional patarrspace is prohibitively slow. Therefore,

most optimisation algorithms for non-linear registratiaart by finding the best initial affine transformation and
then assuming that this is ‘close’ to the desired solutiothst all other parameter changes will be small and
can be found using quick, local optimisation algorithmsattdition, they usually rely on using multi-scale and
multi-resolution analysis techniques to speed the seadsich is discussed next.

2.3.2 Multi-Scale and Multi-Resolution Analysis

When looking at brain images it is normally easy for a persoiéntify a rough alignment based on the gross

features in the image, such as the outline of the skull onbidathematically, a similar thing can be achieved by

using a multi-scale approach. The basic idea is to initiallly and sub-sample the images so that the fine detail is
lost; then only the gross features are used to get an inligairaent. This is usually repeated at several different

scales (amounts of blurring and sub-sampling) so as to rifa#t using progressively finer and finer details.

There are two main advantages to using such a multi-scal@frasolution approach. One is to improve the ro-
bustness of the optimisation, by ensuring that the initidd ficlose’ to the desired solution (the global maximum),
and the other is to speed up the optimisation process. Thidspp is possible because the resampled image has
a larger voxel size and hence contains fewer voxels. Corselguthe similarity function to be evaluated more
quickly. For example, sub-sampling an image from 1x1x1mmxel®to 4x4x4mm voxels decreases the number
of voxels in the image by a factor of 64, allowing the optintisa at this scale to be 64 times faster. Figure 7
shows an illustration of this sub-sampling scheme, withratiai image (1mm cubed voxels) and three typical
sub-samplings (2mm, 4mm and 8mm cubed voxels respectivélgte that in order to ensure robustness the
images must be blurred by an appropriate amount prior tsantpling.

1mm 2mm 4mm 8mm

Figure 7. Example showing an image with 1x1x1mm voxels, dmweéd sub-samplings of this image with
2x2x2mm, 4x4x4mm and 8x8x8mm voxels.

3 Pre-processing, Artefacts and Registration Error

When registering two images the selection of the desireep{especially a similarity/cost function and trans-
formation model) effectively define a model for what kind dferences can exist between well matched images.
For instance, the use of the mean squared difference cagtdarand a rigid-body transformation model implies
that the matched images will have the same intensities upni@ @mount of additive noise, and that the anatomi-
cal structures can be aligned with only a set of global rotetiand translations. However, in practice, unwanted,
complicated differences between images exist which caeasity be dealt with by the available registration op-
tions.

The two most common types of unwanted differences are thoséodphysical/anatomical differences, and those
due to scanning artefacts. Examples of the former categeityde new gross pathologies, such as lesions, and



changes in neighbouring structures which are of no intesash as lung size, fatty tissue deposits or jaw position.
Examples of the latter category include bias field effecs {fifhomogeneities), ghosting, motion distortions and
distortions caused by BO inhomogeneities.

Two common methods of dealing with these unwanted diffezsrace by pre-processing the images and by using
masking or weighting functions in the registration. Preqassing strategies such as bias field removal, brain
extraction, BO-unwarping and ghost reduction, to name a &m be crucial for obtaining good registrations
by removing the differences before registration is run.eilatively, a masking or weighting function for the
similarity/cost function [5] can be used to ignore (or doveight) areas of the image where differences are known,
or expected, to exist. For instance, manually masking aibtes or calculating expected signal loss masks for
BO distortions are two cases where masks are useful. Natéhikas different to masking the images themselves
as that introduces false intensity changes on the edge ah#s¥, whereas incorporating masking within the
similarity function itself just ignores the intensitiestimse voxels.

Errors in registration exist due to several reasons, inetudinremoved artefacts/differences, failed optimamati
(local maxima), inappropriate choice of options (simtiafiuinction, transformation, interpolation, etc) and mois
The last of these, noise, is always present and will inducgesimaccuracy in the final registration. Therefore,
all registration will be inaccurate to some degree, howevany images have such high Signal to Noise Ratios
(SNR) that the main reason for inaccuracy is not the noiséhieudther problems. Hence the typical accuracy with
which a registration can be achieved depends on aspects oégistration algorithm (e.g. optimisation method),
the user’s selected options (e.g. similarity function) #relartefact levels present in the image. Consequently it
is difficult to give any ‘typical’ error values, although ieitain situations attempts to characterise the errors have
been made (e.g. [39] for rigid-body registration). Howewkre to the difficulty in finding test data with known
ground truth, it is more useful and practical to estimateettner for each individual application by careful manual
assessment. This information about how accurate the ratiist is can be crucial for evaluating the reliability
and accuracy of quantitative measures derived from thetexgd images.

4 Motion Correction and Other Applications

As mentioned in the introduction, there are many applicetiof registration and its use in the early (or late) stages
of quantitative analysis is very common. This section wileBly touch on three common applications: motion
correction, multiple acquisition averaging and detecsitrgctural changes in longitudinal studies.

Motion correction is common in functional imaging, espégia neurological fMRI. In this case the motion that
needs to be corrected is the bulk motion of the head (braimtwik a case of rigid-body motion. Consequently
this can be solved by multiple application of intra-modgldibody registration to the fMRI series (by registering
each image in the series to a chosen ‘reference’ image fremsahes) and this is what is implemented in most
motion correction methods. However, this is still a difficotoblem because of the following factors: (a) very
high accuracy (approximately 0.5mm or better) is requicechrrect for induced intensity fluctuations of the size
of the BOLD signal changes; (b) artefacts such as spin4yigtifects [12] and BO-distortion interacting with the
motion [18, 1]; (c) changes in motion between slices [19a8[] (d) non-rigid motion in areas such as the brain
stem. Consequently, motion correction methods are stéictive area of research.

A common way of acquiring MR images with good SNR is to aversseral separate images together. However,
in the same way that motion can occur between image acauisitn a functional series, this motion can also
occur between these separate acquisitions and needs tadaenged for. This correction can also be done using
a series of pairwise image registrations, but the detailshadt sort of registration is required depends on what
structures are involved and how they move. For example,damiimaging it is normally assumed that rigid-body
motion is sufficient (ignoring the small non-rigid motiorntsvantricle edges and in the brain stem). Alternatively,
for imaging the spine it is often necessary to perform naedr registration (possible with a rigid-body constraint
for each vertebra) and it may also be necessary to acquirenthges at a fixed point in the respiration cycle
to limit the change in lung position and size. Therefore thtails of the required registration settings are very
application dependent, and careful thought must be putimdomsing the correct registration options as well as in
the appropriate acquisition and pre-processing measures.

Finally, longitudinal studies are commonly performed id@rto detect subtle changes in anatomical shape or in
guantitative parameters within tissue, which can act akenarfor disease. Registration of the images prior to
comparison is essential and errors in the registration eae h significant effect on the final outcome. Conse-
guently it is important to minimise the errors as much asiptesby a combination of all the available acquisition,



pre-processing and weighting steps outlined in the prevémation. It is also useful to understand the effect that
registration errors can have on the results, and ideakydin be taken into account in the analysis, or at least the
common form of the erroneous results taken into accounestibgly. For example, when there is a registration
error, the largest changes in intensity occur at the boynbletween structures (where the intensity change is
largest) and so false positive results (reflecting largegbka that are purely due to registration error) are likely to
form near these boundaries. The distance from such edgehkithkind of false positive is likely to exist depends
on the registration accuracy, and so having an estimatdsithiery useful, although post-processing stages such
as spatial filtering (blurring) can alter this.

5 Summary

Most automatic (i.e. non-manual) registration methodsiireq (1) a transformation model, (2) a similarity func-
tion and (3) an optimisation algorithm. It is therefore resagy to select an appropriate transformation model,
similarity function and optimisation method for each diffat application. Sometimes this involves choosing the
right parameters within a given implementation, and somesithis means choosing between different implemen-
tations depending on how many user-selectable options/aialale.

The transformation model must be selected to suit the pnoblehand. If an exact match between two images
(or the structures within these images) is required and tlagoay is different, then a high DOF transformation
model (e.g. viscous-fluid) should be used. However, if theges have the same anatomy (e.g. brain of the same
subject in the same session) then a rigid-body model shaulgsbd as this enforces the appropriate constraints.
Note that, in general, the lower DOF models are less seasiiimage quality and hence more robust.

Similarity functions will determine what range of inteysithanges are allowable. For instance, some similarity
functions are only suitable for intra-modal registratiohil& others are suitable for inter-modal registration as
well (where arbitrary intensity relationships can holdpt&lthat any inter-modal similarity function should also
be capable of working for intra-modal image pairs, but it thaye more local maxima than the simpler intra-
modal similarity functions and consequently produce lefialble or robust results.

The optimisation method is the final, and equally importaatmponent of a registration tool. This is what
principally determines the speed and robustness of theadetblsually each implementation of a registration
tool will use one particular optimisation method, which is iategral part of the most inner workings of the
algorithm, and not easily changed. Hence it is often onlysjtds to change optimisation methods by choosing a
different implementation.

Finally, it is equally if not more important to select appriape acquisitions, pre-processing and masking options to
minimise the effects of artefacts and non-modelled imaganghs such as gross anatomical differences between
images (e.g. new lesions). Any changes in the images whichatébe modelled by the spatial transformation
model and the similarity function assumptions needs to ladt @éth prior to the registration. For example, bias
field is a common and problematic artefact in MR images whittoduces a intensity scaling factor that varies
slowly across the image (although less slowly for surfadés @nd very high field scanners). Therefore using
a bias field correction prior to registration is often essgnbd obtain good results, especially when large DOF
transformations are being estimated, as the higher DOEBfyamations are more sensitive to effects like this.
Similarly, masking or weighting the images to ignore areastaining pathologies (e.g. lesions) or structures of
no interest (e.g. jaw in neuro-imaging) can considerablyriswe accuracy and robustness of registration results.

Any automatic registration method will contain some inaacy (due to noise, artefaotsc.). In addition, it is
possible for gross mis-registrations to occur if, for imsta, a local maximum is found rather than the global max-
imum. Such errors can be common in certain applications aptimisation method, in practice, can guarantee to
find the best solution every time. For these reasons, it iay#vadvisable to check the registration results visually
and obtain some subjective (or, ideally, objective) estiived the registration accuracy. This estimate of error
should then be taken into account in subsequent analyshke ohage data.

Appendix A: Mathematical Definitions

This appendix contains mathematical definitions of somengonly used similarity/cost functions for both intra-modaid
inter-modal registration. Let the two images be and I with the voxel intensity at a locatiog (in /1) denoted byl ;.
Furthermore, lefV be the total number of voxels in an image.
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wherel, = + 214 andlp = & >_; IB;. Note that the MAD and MSD are cost functions, NC is a simtijeftinction.

Normalised Correlation =

A.2 Inter-modal

2
Correlation Ratio = 1 -— j %%

Mutual Information = H(Ia)+ H(Is)— H(Ia,IB)
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Normalised Mutual Information
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whereo; is the variancey; is the mean value, and; is the number of voxels in areg ando? is the total variance across

the whole image. Joint entropy is given Bi(14, I5) = — 3_,; 3+ log () wheren,; is the number of voxels that were

assigned to the bin paft, 7). The marginal entropies] (14) andH (1), are defined similarly, but using the individual image
histograms rather than the joint histogram. Note that NMi ¢®st function, while CR and Ml are similarity functions.
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