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These notes cover Part I of Session 3: Segmentation and Volume Measurement.  

Introduction 
This lecture covers the related topics of feature extraction, shape fitting and image 
segmentation. Just about all quantitative analysis of medical images requires some 
form of segmentation or feature extraction. Segmentation [3] [12] [13] distinguishes 
structures, regions or tissue classes of interest from other detail in the images. Feature 
extraction can be used to identify specific structures (e.g. points, blobs, curves, edges, 
surfaces etc) which often have biological importance e.g. organ or lesion boundaries, 
vessels etc. Some techniques begin with feature extraction to identify points of 
interest then build a generic shape model using those features as a reference and 
finally use the fitted shape model to perform image segmentation on new (i.e. 
previously unseen) images. Once structures are labelled, quantitative information 
about volume or shape can be extracted and comparisons can be made. The most 
common useful comparisons are in the same subject over time (e.g. to track growth) 
or between groups of subjects (e.g. to identify systematic structural brain differences 
between two groups of subjects who might score differently in psychological testing). 

I will first briefly review some segmentation techniques that can be applied to 
distinguish tissue classes and then focus on methods of fitting shapes to medical 
images that include some knowledge of either the image properties or the population 
variation of the structure, or both. These methods are generically known as 
deformable models. A somewhat artificial division can be drawn between geometric 
deformable models and statistical shape models. The former are geometric models 
that evolve to match an instance of a structure. The evolution is driven by forces that 
are typically functions of the local image environment and constrained by prior 
knowledge often in the form of simple geometric constraints. Statistical shape models 
inherently require training data and produce compact representations of structural 
variation across a population. A wide range of plausible structure can be generated by 
varying a small number of parameters, resulting in an efficient optimisation task when 
fitting to new data.  

There has been a vast amount of research in all the methods mentioned in 
these notes and to do justice to these topics would require a book. Therefore please 
use this material as pointers to further reading rather than a definitive account. Errors 
and omissions are my responsibility. 
 

I Tissue Segmentation Methods: A Brief Overview 
The properties of MR images have a strong influence on the usefulness of specific 
segmentation methods. Classical segmentation methods attempt to partition an image 
optimally into a number of regions that each satisfy some intensity uniformity 
constraint. In the ideal case, the resulting regions are meaningful and contain distinct 
sets of pixels. In MR images two important confounding factors complicate matters. 
First, intensity inhomogeneity [16] [17] can cause a variation in intensity of a 
particular tissue across the field of view, and second, the intensity of a single voxel 



may be composed of signal from more than one distinct tissue type (i.e. the so-called 
partial volume effect where a voxel lies across a tissue boundary). Partial volume 
effects are inherent in MR and are particularly common when acquisitions have 
relatively high in-plane resolution and low thru-plane resolution (i.e. thick slices). 
One common example of partial volume effect is in classification of brain-tissue into 
grey-matter, white-matter and CSF in T1-weighted images. Partial volume effects 
between white-matter (bright) and ventricular CSF (dark) result in voxels with an 
inbetween intensity which are then misclassified as grey matter. 

The most basic tissue-segmentation method is global intensity thresholding. 
This assumes a voxel intensity can be identified which assigns each voxel into a 
background class (voxels less intense than the threshold) or a foreground class (voxels 
more intense than the threshold). Selection of a global threshold may be done in 
several ways [22] and may not be appropriate in MR images due to intensity 
inhomogeneity. It may be possible to correct such intensity variation prior to 
segmentation. An alternative approach is to use local (adaptive) thresholding where 
the intensity threshold is variable and is computed over sub-images or over a region of 
interest around each voxel. 
 A slightly more sophisticated approach involves intensity-moderated region 
growing. Here a seed voxel is identified and an intensity uniformity constraint is set. 
Then all voxels around the seed are examined to see if their intensities are sufficiently 
similar to those already in the region. Those that satisfy the uniformity constraint are 
added to the region and then all their neighbours are examined and so on (e.g. [1]). 
Clearly the same caveats associated with intensity variation apply here too and if the 
initial constraint is too loose, it is common for the growing region to “escape”  and 
label a much larger set of voxels than was intended. Different seed voxel positions 
may not result in the same generated regions. There are many ways for the constraints 
on region growth to be defined and the potential for human operators to intervene in 
the process e.g. by manually masking parts of the image to prevent region growth. It 
is also possible to start with a loose uniformity constraint and then to subdivide a 
single large region into multiple smaller ones by tightening the constraint.  
 Watershed methods [20] regard the grey-level intensities of an image as a set 
of topographic heights. An immersion model is one where the local intensity minima 
are considered to have holes in them and the image is “ lowered”  into liquid. As the 
liquid level rises, lakes form. Adjacent lakes separated by ridges may merge as the 
level rises further; at this point boundaries can be placed to prevent this merging and 
form a segmentation of separated regions. One common problem is over-segmentation 
where many small not very meaningful regions are generated. Therefore a region 
merge step is often required to create more meaningful larger regions. Sijbers et al 
[15] apply this approach to a voxel intensity gradient magnitude image and 
demonstrate its use in the segmentation of the cerebellum from 3D MR of the mouse 
brain. Rettman et al [14] use watershed methods to segment the sulcal region in 
humans. Grau et al [8] attempt to overcome some known problems of watershed 
algorithms (e.g. noise sensitivity and poor segmentation of very thin or low signal to 
noise structures) by introducing prior probabilistic knowledge. They demonstrate their 
approach on segmentation of knee cartilage and grey/white matter in MR images. 
 A general approach is to take advantage of multiple image acquisitions – the 
most common is T1, T2 and PD-weighted - and use multi-spectral methods. By 
considering the intensities from corresponding voxels as coordinates in an intensity 
space, clustering techniques can be applied to determine rules for segmentation of 
structures or tissues of interest. Many different approaches have been applied to this 



clustering (e.g. artificial neural networks [9], k-nearest neighbours [6], k-means, fuzzy 
c-means [7] etc) but they all take advantage of multiple channels of data providing 
different information about the tissues.  

A number of automated segmentation algorithms that account for the 
inhomomogeneity as part of the segmentation process have been developed. Wells et 
al [21] introduced “adaptive segmentation” where an Expectation Maximisation 
scheme is applied iteratively and alternates between two steps: E: estimate tissue class 
probabilities when bias field is known and M: estimate bias field when tissue class 
probabilities are known. Such approaches have proved highly successful and spawned 
many variants and improvements (e.g. [11] [23] and many more). These approaches 
have been applied to both multi-channel and single-channel data. More recently, more 
integrated approaches have been proposed. For instance Ashburner et al [2] combine 
image registration, tissue classification and bias correction into a unified model based 
on a mixture of Gaussians, Fischl et al model the effect of image acquisition 
parameters on tissue contrast properties for segmentation [7] and Chen et al [5] have 
looked at simultaneous segmentation and registration of contrast-enhanced breast 
MRI. 

Finally it must be remembered that changes in MR technology can affect 
quantitative analysis. For instance, much increased flow artefact has been observed in 
3T brain acquisitions to the extent it dominates over noise in serial imaging [18]. 
More sophisticated segmentation techniques may be required to get the most out of 
these images. 
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II Geometric Deformable Models 
The development of deformable models can be traced back to 1980’s research in 
computer graphics and computer vision. One of the earliest and most well known 
deformable models is the active contour or “snake”  [28] formed of connected spline 
segments. These models demonstrate most of the common principles of geometric 
deformable models and are usually posed as an energy minimization problem. The 
total energy of a snake can be written as follows: 

sconstraintexternalinternalsnak EEEE e ++=  

Einternal is an energy associated with bending or discontinuity in the snake and can be 
written as curvaturetensioninternal EEE βα += . The relative values of α and β are crucial to 

the behaviour of the snake. Eexternal is derived from the action of forces that are 
functions of voxel intensity and typically attract the snake towards edges or lines. 
Econstraints are additional constraints. There is a contribution to each energy term from 
every point on the snake. Therefore the general form of the total energy is: 
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where ( ) ( ) ( )( )sysxs ,=v  specifies a point on the snake as a function of s, the 
arc length. The choice of energy minimisation strategy can have a large effect on 
snake performance. The original work used a variational approach implemented using 
gradient descent, but this proved sensitive to initialisation and image noise, and was 
susceptible to local minima because of the reliance on local information. Amini et al 
[24] suggested using dynamic programming resulting in a locally optimal contour at 
each iteration. Williams and Shah [35] proposed a fast greedy iterative algorithm that 
retained the advantages of the dynamic programming approach but was faster by an 
order of magnitude. Cohen and Cohen [27] took a different approach and suggested 
an additional energy term representing a “balloon”  force that acted to steadily inflate 
(or deflate) the snake past weak edge features corresponding to local minima in the 
energy landscape. Staib and Duncan [33] build a parametric model from the elliptic 
Fourier decomposition of the object boundary, and bias the choice of shape during 
model fitting using probability distributions of the model parameters. An alternative 
formulation of the active contour is the discrete dynamic contour model [30] that 
defines the contour as a set of connected vertices that can be interacted with. 

Xu et al [36] offered a solution to problems of boundary concavity associated 
with initialisation and poor convergence of conventional snakes. Their Gradient 
Vector Flow fields are non-conservative static external forces used to drive snakes. 
The GVF snake is insensitive to initialisation and can move into boundary 
concavities, unlike snakes driven by conservative external forces. The principal 
difference between GVF forces and traditional forces is that the latter can be written 
as the gradient of a static potential i.e. they are irrotational, but the GVF force has an 
additional solenoidal component and so is a general vector field in the Helmholtz 
sense. The GVF force reduces to the standard gradient of an edge map close to strong 
edges, but is interpolated from forces at the region boundaries away from strong edges 
“reflecting a kind of competition among the boundary vectors”  [36]. 

Active contour methods are categorised by the use of parametric or implicit 
contour representations. Parametric representations specify the general class of 
contour in advance; examples include the original spline approaches, finite-element 
models [27] and analytical models such as super-quadrics [34]. Implicit 
representations lead to methods that can cope with topological changes. The most well 



known implicit representations are snakes that use level-sets and, in particular, 
geodesic snakes. Implicit snakes define the evolving contour as the zero level set of a 
higher dimensional function (known as the embedding function). This approach 
allows topology changes of the snake while the embedding function remains well 
defined and extends naturally from contours to surfaces in higher dimensions. The 
original formulation of level-set snakes [25][31] could not be expressed as an energy 
minimization problem and therefore defining an appropriate stopping condition was 
difficult. Geodesic snakes introduce a modified distance measure that incorporates 
information about image gradient magnitude so that the level set evolves towards the 
appropriate minimum energy state [26] [29]. Geometric snakes [37] adopt an 
analagous approach. The appropriateness of the original formulations for complex 
medical images has been questioned [32]. 

Geometric deformable models in their pure form are still in use but there is a 
growing trend towards models that incorporate more specific prior knowledge about 
the expected variation of shape variation and image texture. These statistical shape 
models are described in the next section. 
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III Statistical Shape Models 
In contrast to the geometric deformable models described in the first section, 
statistical shape models use sets of well-characterised training data to learn about the 
shape of structures, their spatial relationships and (sometimes) their voxel intensity 
distribution. The goal is the build “generative”  models where new realistic instances 
of shape data can be generated even when they are not explicitly represented in the 
training-set. Such models can be used to label previously unseen data and can make 
labelling algorithms robust to noisy or incomplete data. Two desirable properties of 
shape models are that they be both general and specific.  Ideally, a general model is 
one that can generate all plausible instances of the structure it is modelling. A specific 
model is one that can only generate plausible instances of the structure. Statistical 
shape models aim to be both general and specific by capturing the variability of the 
training-set. In that regard, they can only be as general or specific as the training data 
so choice of training data is crucial to their success. Unlike the geometric deformable 
models considered above, considerable effort is often required to prepare annotated 
training data for use by statistical shape models. The other chief limitations are that 
the models cannot easily capture topology change and that the shape properties must 
be distinct enough to be described statistically. In practice this means that consistent 
features must be identified across the population. 

Shape is usually defined as a property that is invariant to translation, rotation 
and scaling operations. The most common way to represent shape in statistical shape 
models is by a set of ordered landmarks defined in two or three dimensions [38]. 
Landmarks should always be defined at easily identifiable points in the images. In 
practice there are often too few well-defined points to fully capture the variability of a 
shape. Where there is a well-defined edge or surface connecting well-defined 
landmarks, additional landmarks can be placed at intervals between the original set. 
Obtaining ordered sets of corresponding landmarks can be difficult and tedious, 
especially for large studies and on 3D data. Two approaches for generating landmarks 
automatically have been proposed. The first [44] [47] uses an image (voxel) 
registration approach to find a dense set of correspondences between population 
images and a reference. Assuming the image registration is accurate (and this is by no 
means assured in general) then point correspondences are obtained automatically. The 
second approach [42] recasts the problem in terms of determining the set of shape 
parameterisations that result in the “best” model. Here “best”  is defined as the 
Minimum Description Length model that is hypothesised to be the simplest (most 
compact, general and specific) model that accurately describes the data. 

Once landmarks have been extracted for each subject in the training set a 
corresponding vector, x, can be defined for each subject containing their landmark  
coordinates. For n landmarks the vector has 2n entries in 2D (x and y) and 3n entries 
in 3D (x, y and z). The reason that statistical shape models work is that, in cases of 
interest, the coordinates of the n landmarks vary in a correlated way across the 
population. Building a statistical model of this variation allows the correlations 
inherent in the training data to be represented compactly. The first step is to remove 
differences between subjects that are due to translation and rotation (and sometimes, 

but not always, scaling). The second step is to compute the mean, x , and the 
covariance S of the training data. The third step is to use Principal Component 
Analysis (PCA) and compute the eigenvectors and eigenvalues of the covariance 
matrix. Each training example, x, can then be approximated by a weighted linear 



combination of the first m eigenvectors b �xx +≈  where b is an m-dimensional 
vector of weights and ΦΦΦΦ is a matrix containing the first m eigenvectors. This is an 
example of a Point Distribution Model (PDM). The more dependence there is between 
different coordinates in the training vector across the population, the smaller m needs 
to be to efficiently capture most of that variation. More explicitly, the eigenvalues 
associated with the eigenvectors in ΦΦΦΦ are the variance in the training-data in the 
direction of each eigenvector. Therefore m can be chosen to capture a given 
percentage (e.g. 95%) of the variance in the data. For a given ΦΦΦΦ, b can be varied to 
generate new instances of the shapes represented by the model that are not part of the 
training data. 

The variation in shape is only one kind of variation that might be important in 
medical imaging; the variation in voxel-intensity within structures may also be of 
interest. The spatially correlated patterns of intensity variation constitute the “ texture”  
associated with a structure. Statistical models of “appearance”  are those that attempt 
to capture variation in both shape and texture. One approach is to first warp each 
training example to the mean shape (using knowledge of corresponding landmarks) so 
that the texture is not confounded by shape variation. Intensities are sampled from 
voxels in these normalised images and used to build a texture vector. This is 
analogous to the shape vector previously described, but instead of recording 
coordinates, we are now recording voxel intensities. Again however, we assume there 
will be consistent correlations in intensities from different voxels across the training 
set. It is important that the intensity distribution is consistent across the training set, so 
for medical images acquired on different scanners or with variable scanning 
conditions, some intensity normalisation may be required. PCA can be applied here 
too, to summarise the variation in texture in a compact manner. As before, a 
weighting vector fitting the model to each training example can be generated. As there 
may be correlations between shape and texture, it is possible to perform a further PCA 
on the set of combined weights resulting in a set of combined eigenvectors and 
eigenvalues that capture the correlation and relative contribution of shape and texture.  

To be useful in a labelling or segmentation context we need a strategy for 
fitting shape and texture models to new (or “unseen”) data. The new data is not 
assumed to have any annotation – the usefulness of the statistical model is that new 
data can be labelled at low cost. The most intuitive approach is to define a function 
that measures the “goodness-of-fit”  of the model to the new data. Then we can 
imagine varying the weighting parameters, b, to generate new instances of the model 
in some systematic way to maximise the goodness-of-fit (or minimise the error). For 
the pure shape models, there are two main approaches. A simple geometric strategy is 
to apply an edge or boundary detector to the new data and obtain a set of candidate 
points on edges in the image. The mean distance between the model points and 
nearest edge points in the image can be used as an estimate of fitting error. An 
alternative approach is to look along normals to each model point at it’s currently 
estimated position in the new data. The strongest edge along each normal is chosen to 
be the next candidate model point.  This latter approach is prone to failure but 
suggests a better strategy that has become known as the Active Shape Model (ASM) 
[39][40]. In the ASM, an intensity-normalised spatial derivative of voxel intensity is 
sampled along normals associated with each model point in each member of the 
training set. For each model-point, these are assumed distributed as a multi-variate 
Gaussian that can be summarised by its mean and variance. Then the quality of the fit 
of a candidate point to the model can be measured using the Mahalanobis distance, 
which is linearly related to the log probability that the new point is drawn from the 



model distribution. Standard techniques such as multi-resolution searches are used for 
speed and robustness. To fit combined shape and texture models to unseen data 
requires a slightly different approach such as the so-called Active Appearance Model 
(AAM) [41]. In this case new instances of images can be generated using the 
Appearance Model and a measure of image similarity computed between the new data 
and the current instance. To solve this problem efficiently a pre-processing step is 
applied to learn the likely variation in model parameters that lead to good model 
fitting.  

Statistical shape models can be constructed using different representations of 
the underlying shape. For instance, in [48] a coarse-scale medial [46] description 
derived from a fine-scale spherical harmonic boundary description is used and in [45] 
the vibration modes of a spherical deformable mesh are used. Principal Component 
Analysis is not always the most appropriate decomposition of variance due to linearity 
assumptions. Other approaches include Independent Component Analysis (e.g. [49]) 
and many different approaches collectively called non-linear PCA (e.g. [43]). 
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IV Applications Developments in Deformable Models 
A huge number of papers describe applications of deformable models or a range of 
improvements and variations on the standard approaches. We mention only a few in 
this section and point to some recent reviews [57] [58] [60] [62] [63] [65] [70] for the 
interested reader. 

Many researchers have applied deformable surface models to extract 
representations of the cerebral cortex e.g. [54] [72] [73]. Ghanei et al [56] describe a 
deformable surface model for automatic prostate segmentation in ultrasound images. 
Shen and Davtatzikos [68] extend the simple snake models to consider the local 
geometry around each contour point, the statistical confidence of the match and the 
energy along contour segments, rather than points, to improve robustness. Shen [69] 
extends this approach to measure the size and shape of hippocampi. Joshi et al [59] 
described a multi-scale Bayesian approach based on a medial representation where the 
parameter distributions naturally capture population variation and can describe 
localised growth and bending. Chan et al [53] combine elements of curve evolution, a 
Mumford-Shah segmentation functional and level sets to cope with noisy images or 
objects with very diffuse boundaries. Brock et al [51] describe a finite element based 
registration scheme that models multiple organs and can be used for image-guidance 
procedures and treatment planning. Deformable surfaces have also been used to 
segment time-series of 3D cardiac images [50] [64] [66] [67]. Active appearance 
models have also been applied to this problem [55]. A proposed two-stage 
segmentation of echocardiographic data uses registration of a voxel template to 
initialise a wire-frame mesh [74]. Deformable models have also been used to segment 
vascular structures in MR angiography [61 [71].  Active shape models have been 
extended for tubular structures by independently modelling axis deformation and 
cross-sectional deformation and by incorporating additional cylindrical deformation 
modes [52]  
 In summary, both geometric deformable models and statistical shape models 
are well-developed techniques that have been applied in a variety of situations and can 
be used in new segmentation applications. Work continues to improve these 
techniques and combine them to produce more robust and generic algorithms. 
 

References IV 
50. Angelini ED, Homma S, Pearson G, et al, Segmentation of real-time three-

dimensional ultrasound for quantification of ventricular function: A clinical study 
on right and left ventricles, Ultrasound in Medicine and Biology 31 (9): 1143-
1158 2005. 

51. Brock KK, Sharpe MB, Dawson LA, et al, Accuracy of finite element model-
based multi-organ deformable image registration, Medical Physics 32 (6): 1647-
1659 2005. 

52. de Bruijne M, van Ginneken B, Viergever MA, et al, Adapting active shape 
models for 3D segmentation of tubular structures in medical images, Lecture 
Notes in Computer Science 2732: 136-147 2003. 

53. Chan TF, Vese LA, Active contours without edges, IEEE Transactions on Image 
Processing 10 (2): 266-277 2001. 

54. Davatzikos C, Spatial transformation and registration of brain images using 
elastically deformable models, Computer Vision and Image Understanding 66 (2): 
207-222 1997. 



55. van der Geest RJ, Lelieveldt BPF, Angelie E, et al, Evaluation of a new method 
for automated detection of left ventricular boundaries in time series of magnetic 
resonance images using an active appearance motion model, Journal of 
Cardiovascular Magnetic Resonance 6 (3): 609-617, 2004. 

56. Ghanei A, Soltanian-Zadeh H, Ratkewicz A, et al, A three-dimensional 
deformable model for segmentation of human prostate from ultrasound images, 
Medical Physics 28 (10): 2147-2153 2001. 

57. Hawkes DJ, Barratt D, Blackall JM, et al, Tissue deformation and shape models in 
image-guided interventions: a discussion paper, Medical Image Analysis 9 (2): 
163-175 APR 2005. 

58. Jain AK, Zhong Y, Dubuisson-Jolly MP, Deformable template models: A review 
Signal Processing 71 (2): 109-129, 1998  

59. Joshi S, Pizer S, Fletcher PT, et al, Multiscale deformable model segmentation 
and statistical shape analysis using medial descriptions, IEEE Transactions on 
Medical Imaging 21 (5): 538-550 2002. 

60. Kirbas C, Quek F, A review of vessel extraction techniques and algorithms, ACM 
Computing Surveys 36 (2): 81-121 2004. 

61. de Koning PJH, Schaap JA, Janssen JP, et al, Automated segmentation and 
analysis of vascular structures in magnetic resonance angiographic images , 
Magnetic Resonance in Medicine 50 (6): 1189-1198, 2003. 

62. Meier U, Lopez O, Monserrat C, et al. Real-time deformable models for surgery 
simulation: a survey, Computer Methods and Programs in Biomedicine 77 (3): 
183-197 2005. 

63. McInerney T, Terzopoulos D, Deformable Models in Medical Image Analysis: A 
Survey, Medical Image Analysis, 1(2), 1996, 91-108.  

64. McInerney T and Teropoulos D, A dynamic finite element surface model for 
segmentation and tracking in multidimensional medical images with application to 
cardiac 4D image analysis, Computerized Medical Imaging and Graphics 19(1), 
pp 69-83, 1995. 

65. Montagnat J, Delingette H, Ayache N, A review of deformable surfaces: topology, 
geometry and deformation, Image and Vision Computing 19 (14): 1023-1040 1 
2001. 

66. Montagnat J, Delingette H, 4D deformable models with temporal constraints: 
application to 4D cardiac image segmentation, Medical Image Analysis 9 (1): 87-
100 2005. 

67. Sermesant M, Forest C, Pennec X, et al, Deformable biomechanical models: 
Application to 4D cardiac image analysis, Medical Image Analysis 7 (4): 475-488 
2003 . 

68. Shen DG and Davatzikos C, An adaptive-focus deformable model using statistical 
and geometric information, IEEE Transactions on Pattern Analysis and Machine 
Intelligence 22 (8): 906-913 2000. 

69. Shen DG, Moffat S, Resnick SM, et al, Measuring size and shape of the 
hippocampus in MR images using a deformable shape model, NeuroImage 15 (2): 
422-434 2002. 

70. Suri JS, Liu KC, Singh S, et al, Shape recovery algorithms using level sets in 2-
D/3-D medical imagery: A state-of-the-art review, IEEE Transactions on 
Information Technology in Biomedicine 6 (1): 8-28 2002. 

71. Suri JS, Liu KC, Reden L, et al, A review on MR vascular image processing: 
Skeleton versus nonskeleton approaches: part II, IEEE Transactions on 
Information Technology in Biomedicine, 6 (4): 338-350, 2002. 



72. Suri JS, Singh S, Reden L, Computer vision and pattern recognition techniques for 
2-D and 3-D MR cerebral cortical segmentation (Part I): A state-of-the-art review, 
Pattern Analysis and Applications 5 (1): 46-76 2002. 

73. Suri JS, Singh S, Reden L, Fusion of region and boundary/surface-based computer 
vision and pattern recognition techniques for 2-D and 3-D MR cerebral cortical 
segmentation (Part-II): A state-of-the-art review, Pattern Analysis and 
Applications 5 (1): 77-98 2002. 

74. Zagrodsky V, Walimbe V, Castro-Pareja CR, et al, Registration-assisted 
segmentation of real-time 3-D echocardiographic data using deformable models, 
IEEE Transactions on Medical Imaging 24 (9): 1089-1099, 2005. 

 
 


	Table of Contents
	2006 Annual Meeting Program Committee
	Continuing Education
	Declaration of Speaker Financial Interests or Relationships
	================
	Saturday, 6 May 2006
	MR Physics for Physicists - Day 1 - 08:30 to 18:00 ~ Room 6E
	Origins of the Equations of Magnetization Dynamics 
	Numerical Implementation of the Bloch Equation to Simulate Magnetization Dynamics and Imaging
	Alternate Mechanisms for Spin Polarization
	Imaging Strategies for Hyperpolarized Elements and Molecules 
	Contrast Mechanisms in Molecular Imaging - No syllabus contribution available
	Quantum Mechanical and Semi-Classical Theory of Relaxation
	Relaxation and Contrast Mechanisms in Living Tissue 
	Fast SE/TSE/RARE, Refocusing with Low Flip Angle Pulses
	Fast Gradient Echo Including SSFP
	Pulse Sequence Design for EPI and Non-Cartesian Sampling
	Limits of SNR and Practical Consequences 

	Quantitative Image and Data Analysis - Day 1 - 09:00 to 17:40 ~ Room 613-614
	Introduction to Quantitative Analysis 
	Mapping of Quantitative MR Parameters
	Statistical Analysis of Quantitative MR Data: Basic Methods
	Artifacts, Noise, Filtering and Compensation Techniques 
	Image Registration and Motion Correction 
	Feature Extraction, Shape Fitting, and Image Segmentation
	Quantitative Morphology: Volumes, Shapes, and Voxel-Based Measures
	Motion Estimation, Modeling, and Compensation  
	Bulk Flow Measurements and Angiography 

	Advanced Body Imaging - 08:30 to 18:15 ~ Room 6D
	Approach to Diagnosis of the Difficult Liver Lesion with MRI
	Liver Specific Contrast Agents: An Update
	Assessing Tumor Response in Liver Therapy
	Pancreas: From Structure to Function
	MRCP and MRI in the Evaluation of Bile Duct Obstruction
	MRI of Ano-Rectal Diseases
	MRI of Prostate Cancer: Diagnosis, Staging, and Treatment 
	The Role of MRI in Evaluating Benign Uterine Disease
	Diagnosing, Staging and Stratifying Patients with Malignant Uterine Disease
	Characterizing Adnexal Masses: Pearls and Pitfalls
	Optimizing Your Breast MRI Technique
	MRI Criteria to Diagnose Breast Cancer 
	MRI Screening of High Risk Women
	MR Guided Breast Interventions

	Clinical MRI: From Physical Principles to Practical Protocols - 08:00 to 17:45 ~ Room 615-617
	Overview of MR Physics
	Musculoskeletal MR Principles (Spin-Echo, FSE, Gradient Echo)
	Musculoskeletal MR Practical Protocols 
	Body MR Principles (STIR, Gradient Echo, Fast Imaging Tricks)
	Body Protocols
	Vascular MR Principles (TOF, 3D GRE)
	Vascular Protocols
	Neuro MR Principles (FLAIR, EPI-Perfusion, Diffusion)
	Neuro Protocols  
	Cardiac MR Principles (Gating, True FISP, Phase Contrast)  
	Cardiac Protocols

	Diffusion and Perfusion Methodology - 08:30 to 18:15 ~ Room 6C
	Theory of Diffusion
	Biophysical Underpinnings of Diffusion
	Tensor Encoding / Decoding
	Sequences for Diffusion MRI
	Artifacts and Pitfalls in Diffusion MRI -  No syllabus contribution available
	DSI/ Qball/ GDTI and Tractography
	Theory of Perfusion Measurements
	DSC Perfusion (with Pitfalls)
	ASL Perfusion - Pulsed/Continuous
	New Ideas in Perfusion
	Exchange
	Clinical Applications of Diffusion/Perfusion MRI: A Review

	Molecular Imaging - 08:00 to 17:50 ~ Room 602-604
	Introduction
	Imaging Technologies I: Physical Principles, Technical Issues
	Imaging Technologies II: Comparison of Techniques, Strengths/Weaknesses, Fusion
	Combined Technologies: MRI/PET, PET/CT, MRI/Optical Œ Instrumental Aspects - No syllabus contribution available
	Concepts of Probe Design I: Physical Principles of Reporter Moieties
	Concepts of Probe Design II. Design of Target-Specific Probes
	Combined Technologies: Multimodal Probes
	Non-Invasive Imaging of Cell Signaling
	Imaging the Function of Gene Products
	Monitoring Cell Migration
	Molecular Imaging in Drug Research 
	Molecular Imaging and Atherosclerosis
	Molecular Imaging in Experimental Therapeutics of Cancer

	MR Spectroscopy in Clinical Practice - 08:30 to 18:00 ~ Room 611-612
	Basics of MR Spectroscopy for the Practicing Clinician
	1D, 2D and 3D Localization Techniques and Shimming
	Data Processing and Interpretation
	1D and 2D Quantification Methods
	Quality Assurance and Artifacts
	Clinical Potential of C- and P-MRS
	MRS in Congenital Metabolic Disorders
	MRS in Pediatric Tumors
	MRS in Perinatal Asphyxia
	MRS, MRI & fMRI in Epilepsy Surgery
	MRS in Therapy Planning and Follow-up of Adult Brain Tumors
	MRS in Stroke, MS and Infectious Diseases
	MRS in Neurodegenerative Diseases
	MRS in Psychiatric Diseases
	P31-MRS of Muscle Diseases
	MRS of Prostate Diseases

	RF Systems Engineering - 08:30 to 18:15 ~ Room 618-620
	Overview of Signal Detection and the RF Chain
	Principles and Modeling of the Signal Detection by a Coil
	Introduction to the World of RF; Transmission Lines, Impedence Transformers, and RF Components
	RF Measurements: The Network Analyzer and Smith Chart
	Preamp Design and Characterization 
	T/R Switchs, Baluns, Traps, and Active Detuning Elements
	Volume Coil Types and Design Principles
	Array Coil Types and Design Principles
	Modeling the EM Wave Interaction with the Body and SAR 
	Transmit SENSE Coil


	===============
	Sunday, 7 May 2006
	MR Physics for Physicists - Day 2 - 08:30 to 18:00 ~ Room 6E
	MR Elastography
	Velocity Encoding and Flow Imaging
	Gridding for Non-Cartesian k-Space Sampling
	Reconstruction for Multi-Coil Acquisition
	Generalized Spatial and Temporal Interpolation, Limited Data Reconstruction
	Overview of the Technical Challenges
	Optimized Pulse Sequences at High Field 
	Principles of Parallel Transmission
	Physical Principles for the Assessment of MRI Safety at High Field 

	Quantitative Image and Data Analysis - Day 2 - 09:00 to 17:40 ~ Room 613-614
	Perfusion/Permeability 1: Tracer Kinetic Modeling Using Contrast Agents
	fMRI Modeling and Analysis
	Perfusion/Permeability 2: Modeling of Arterial Spin Labeling Signals
	Spectroscopy Modeling and Analysis
	Elastography Modeling and Analysis
	Data Presentation and Interpretation: Rendering, Data Fusion, and Surgical Planning
	Quantitative Data in Clinical Practice - No syllabus contribution available

	Experimental Methods in MR of Cancer - 08:30 to 17:15 ~ Room 6C
	Evaluating Pathways, Inhibition and Regulation Using MRS
	Choline Metabolism: Meaning and Significance
	Clinical Applications of Magnetic Resonance Spectroscopy
	Measuring Vascular Properties Using Contrast Agents
	Tracer Kinetic Models: Extracting Physiological Vascular Information
	Measuring Vascular Properties Using Intrinsic Contrast Mechanisms (inc BOLD)
	Hypoxia and its Assessment
	Clinical Applications of MR Methods That Assess Tumor Vascular Functionality
	Associating MR Findings with MR Gene and Protein Expression
	Diagnosis of Cancer Using MAS
	Apoptosis: MR Consequences
	Diffusion MRI:  A Biomarker for Cancer Treatment Response

	Multi-Modal fMRI: Physiology, Acquisition, and Analysis - 08:30 to 18:15 ~ Room 611-612
	Brain Oscillations and Neural Networks
	Physiology, Hemodynamics, and BOLD Signals
	fMRI Paradigm Design
	Pre-processing of BOLD fMRI Data
	General Linear Model for BOLD fMRI Analysis
	Independent Component Analysis of BOLD fMRI Data
	Diffusion Tensor Imaging: Acquisition and Processing
	DTI/fMRI: Integration/Synergy
	Low-Frequency BOLD Fluctuations and Brain Functional Connectivity
	Perfusion-Based fMRI
	Blood-Volume-Based fMRI

	Demystifying Biomedical MR Spectroscopy: Challenges, Advanced Concepts, and Applications - 08:00 to 15:15 ~ Room 615-617
	The Art of RF Pulse Design for MRS 
	Spectral Editing - Uncovering Hidden Metabolites
	What is the "Hype" in  Hyperpolarization?
	New Approaches to Spectral Processing and Quantification
	Ex Vivo Spectroscopy - Linking the Benchtop to the Clinic
	Multi-nuclear MRS of Metabolic Dynamics in the Brain
	New Approaches to MRS of Cerebral Disorders
	Spectroscopic Window on Tumor Metabolism
	Advances in MRS of Diabetes and Obesity

	Musculoskeletal Imaging - 08:00 to 17:25 ~ Room 618-620
	Shoulder MR Update
	MRI of the Elbow
	MRI of Muscle Injury
	MRI of the Wrist and Hand
	Knee MR Update
	MRI of the Ankle
	MRI of the Hip
	Bone Marrow Imaging
	MRI of Soft Tissue Pseudotumors

	Advanced Brain MR Imaging - 08:30 to 17:45 ~ Room 602-604
	Protocol Update: Stroke, Tumors, Epilepsy and MS - No syllabus contribution available
	High-Resolution Cortical Imaging
	Parallel Imaging: Concepts and Applications
	Brain Imaging at 3T and Challenges at 7T
	Measuring Brain Volume Changes: the Tools
	Volumetrics of Brain Development
	Volumetrics of MS and Aging
	DSC Perfusion: Concepts and Applications
	ASL Perfusion: Concepts and Applications
	DTI: Concepts, Quantification and Quality Issues
	DTI of Brain Development
	Fiber Tracking: Concepts and Applications
	Data Analysis, Reproducibility and Reliability, Pitfalls
	Clinical Applications: Surgical Planning in Tumors 
	Clinical Applications: Neurodegenerative Disorders and MS

	Cardiac MRI - 07:30 to 17:15 ~ Room 6D
	Imaging of Coronary Artery Disease with MRI/MRA
	Ischemia Detection Using Perfusion, BOLD, etc.
	Ischemia Detection Using Wall Motion, Strain, etc. - Late addition to program/no syllabus contribution available
	Myocardial Viability: DE-MRI and LD-Dob
	MESA
	ICELAND MI:  An Epidemiology Study of Unrecognized Myocardial Infarction - No syllabus contribution available
	MR-IMPACT (Perfusion)
	Controversies and Approaches to Stem Cell Revascularization - Late addition to faculty/no syllabus contribution available
	Evaluation (Function, Ischemia) of Stem Cell Therapy Patients
	Stem Cell Labeling, Tracking, and Delivery in Cardiovascular Disease
	Stem Cell Therapy in Acute Myocardial Infarction
	Cardiac Imaging: 1.5T vs 3.0T - Where's the Benefit?
	Interventional CMR
	Cardiac Intervention





