Overview

- Safety Issues
- Imaging Planes
- Clinical Protocols: A How To ...
 - Cardiac Morphology and Masses
 - Valvular Disease
 - LV Function
 - Ischemic Heart Disease

MR Safety Issues

- Contraindications
 - Pacemaker/Defibrillator/Pumps
 - Recent (< 6 wks) coronary stenting

- Not Contraindications
 - Prosthetic valves
 - Vascular stents (> 6 wks)
 - Sternotomy wires
 - IVC filters
 - Arrhythmias (use special sequences)

Overview

- Safety Issues
- Imaging Planes
- Clinical Protocols: A How To ...
 - Cardiac Morphology and Masses
 - Valvular Disease
 - LV Function
 - Ischemic Heart Disease

Commonly Used Imaging Planes

- Short Axis
- RV
- LV
Commonly Used Imaging Planes

Vertical Long Axis (2 Chamber)

Commonly Used Imaging Planes

Horizontal Long Axis (4 Chamber)

Commonly Used Imaging Planes

Three-chamber view

Imaging Planes

A Step-by-Step Guide ...

Imaging Planes

Coronal Scout

Imaging Planes

2 chamber scout
Imaging Planes: Short Axis

- 2 chamber scout
- Axial HASTE

Imaging Planes: 4 chamber

- 2 ch scout
- Short axis

Imaging Planes: 2 chamber

- 4 chamber scout
- Short axis

Imaging Planes: LVOT

- Axial HASTE

Overview

- Safety Issues
- Imaging Planes
- Clinical Protocols: A How To ...
 - Cardiac Morphology and Masses
 - Cardiac Masses
 - Pericardial Disease
 - ARVD
 - Valvular Disease
 - LV Function
 - Ischemic Heart Disease

Cardiac Masses/Pericardium

- Set-up
 - ECG leads
 - IV/Gd optional
- Axial/Coronal SS TSE/HASTE
- Multiplanar T1 TSE (limited coverage)
- Selected multiplanar cine GRE
- Optional
 - Gd-DTPA, Post-contrast T1 TSE
 - Single slice BH STIR or FS-TSE
Cardiac Masses

- **Benign**
 - Myxoma: left atrium most common
 - Lipoma
 - Rhabdomyoma
 - Fibroma
 - Thrombus
- **Malignant**
 - Metastases
 - Angiosarcoma
 - Rhabdomyosarcoma

Characterization of masses
- Lipoma—fatty mass
- Myxoma—classic septal attachment
- Thrombus
 - Gd-enhancement/ Viability imaging
- Location and extent
- Effect on hemodynamics

Location and extent

Effect on hemodynamics

- **Lipomatous hypertrophy of the interatrial septum**

- **Thrombus (LV infarct)**

- **LV Thrombus**
 - Non-enhancing
 - Well seen on delayed CE-MRI

- **Lymphoma**
Constrictive Pericarditis

- Pericardial thickening > 3 – 4 mm
- Small RV and LV
- Enlarged RA and LA
- Paradoxical Septal Motion

Cardiac Mass?

Right Atrial Pseudomass

- Nodular thickening, linear strands
- Between IVC and coronary sinus
- 59-90% of cardiac MR studies
- Normal anatomic structures:
 - Crista terminalis
 - Eustachian valve
 - Thebesian valve
 - Chiari network

ARVD

Arrhythmogenic right ventricular dysplasia

- Ventricular tachycardia
- 30% familial
- Diagnosis difficult
 - Biopsy
 - Echocardiography
 - Electrophysiology
 - MRI
 - Fibrofatty replacement of right ventricular myocardium
 - Right ventricular aneurysmal dilatation
 - Dyskinesis

ARVD Protocol

- Set-up
 - ECG leads
 - No iv, no Gd
- Axial SS TSE/HASTE
- Axial TSE
 - High resolution
- Axial cine GRE

ARVD FSE: Imaging Tricks

Saturation band over LV
ARVD FSE: Imaging Tricks

- Turn Posterior coil elements off
- Decrease FOV

ARVD FSE

- Fibrofatty replacement of RV wall

ARVD

- **RV Dyskinesis**

Cine GRE

ARVD Diagnostic Criteria

- Two major criteria
- One major and two minor criteria
- Four minor criteria

Overview

- Safety Issues
- Imaging Planes
- Clinical Protocols: A How To ...
 - Cardiac Morphology and Masses
 - Valvular Disease
 - LV Function
 - Ischemic Heart Disease

Not Right Ventricular Dysplasia

- Potential Pitfalls
 - Moderator band
 - Apical thinning

Overview

- Safety Issues
- Imaging Planes
- Clinical Protocols: A How To ...
 - Cardiac Morphology and Masses
 - Valvular Disease
 - LV Function
 - Ischemic Heart Disease
Valvular Disease

- Set-up
 - ECG leads
 - No IV
- Axial SS TSE/HASTE
- Double oblique scouts
- LV function cine GRE
- Cine GRE biplane through valve
- Phase contrast flow quantification
- Optional:
 - High resolution black blood TSE

Phase Contrast Applications

- Peak velocity tracings
 - Doppler-like waveforms
 - Pressure gradient estimates

Modified Bernoulli Equation

\[\Delta P = 4 \times v_{max}^2 \]

- Volume flow rates
 - Total blood flow (Aorta, PA)
 - Regurgitant volume

Aortic Stenosis

- PC through Jet
 - Venc = 500

Aortic Valvular Disease

By planimetry: 1.2 cm² (Mild stenosis)

Peak = 223 cm/sec
Aortic Valvular Disease

- Peak systolic velocity
 - 223 cm/sec
 - 2.23 m/s
- Peak pressure gradient
 - 4 \times v^2
 - 20 mmHg

Volume Flow Measurements

Clinical History: Status post pulmonic valvulotomy
Clinical question: Is there pulmonic insufficiency?

Pulmonic Artery Phase Contrast

Phase-Contrast

Pulmonic Insufficiency

120 cc forward flow
50 cc reverse flow
Effective forward flow = 70 ml
Regurgitant fraction = 0.42

Tricks for Quantifying Regurgitation

- Regurgitant Fraction = Regurgitant flow/Forward flow
- Mitral Regurgitant Fraction = (SV – Aortic Forward Flow)/SV or (SV – Pulmonary Forward Flow)/SV

Overview

- Safety Issues
- Imaging Planes
- Clinical Protocols: A How To ...
 - Cardiac Morphology and Masses
 - Valvular Disease
 - LV Function
 - Ischemic Heart Disease
LV Function

- Set-up
 - ECG leads
 - No i.v.
- Axial SS FSE/HASTE
- Double Oblique Scouts
- Cine GRE
 - Short axis from base to apex (6-8mm/2mm)
 - Long axes views
- Phase contrast flow quantification
 - Aortic outflow (SV)

LV Functional Parameters

- LV End Diastolic Volume (EDV) (ml)
- LV End Systolic Volume (ESV)
- Stroke Volume (SV) = EDV – ESV
- Ejection Fraction = SV/EDV (%)
- Cardiac Output = SV x HR (L/min)
- Cardiac Index = Cardiac Output/BMI
 - (BMI based on height and weight)
- LV Mass = LV myocardial vol x 1.04 g/ml

Calculating LV Volumes

- Cine GRE Short Axis
- Modified Simpson’s rule
 - LV = A1 + A2 + … + An
 - Assuming t = 1 cm (8/2 gap)

Short axis - Base

End diastole
EDV A2 = 19 cm²

End systole
ESV A2 = 9 cm²

Short axis - Apex

End diastole
EDV A5 = 12 cm²

End systole
ESV A5 = 6 cm²

Stroke Volume = EDV - ESV
EF = SV / EDV x 100%
Tip #1: Choosing the slices
- LV covers larger number of slices at EDV and ESV
- Avoid including LA
- Tip:
 - Include only slices that have circumferential muscle ring

Tip #2: Papillary muscles?
- Bottom line: Be consistent

Wall Motion/Contractility

Ischemic Heart Disease
- Exercise impractical
- Dobutamine for increased contractility and oxygen consumption
 - Target HR 0.85 x (220-age)
- Adenosine/persantin for differential hyperemia

Overview
- Safety Issues
- Imaging Planes
- Clinical Protocols: A How To ...
 - Cardiac Morphology and Masses
 - Valvular Disease
 - LV Function
 - Ischemic Heart Disease
 - Stress testing
 - Viability

Stress Protocol Option #1
- Dobutamine Cine GRE
 - Careful monitoring
 - BP, Pulse ox, ECG (rate/rhythm)
 - Beta blocker to reverse
 - Cine GRE following incremental doses
 - Rest
 - 10 ug/min/kg 3 min
 - 20 ug/min/kg 3 min
 - 30 ug/min/kg 3 min
 - 40 ug/min/kg 3 min
 - Optional Atropine 0.25 mg x 4 to achieve HR
 - Real-time image reconstruction/display
Dobutamine Example

Stress Protocol Option #2
- Adenosine/Persantine Perfusion
 - Careful monitoring
 - BP, Pulse ox, ECG (rate/rhythm)
 - Aminophylline to reverse
 - Stress perfusion
 - Adenosine 140 ug/min/kg 6 min (image at 3 min)
 - Dipyridamole 0.56 mg/kg over 4 min
 - 20 min delay
 - Rest perfusion

Myocardial Perfusion
- Sequences
 - Gated single-shot SR or IR turboFLASH or true FISP
 - Notched interleaved SR spoiled GRE
- Typically 3 – 6 short axis slices every HB or every other HB
- First pass Gd (0.02 – 0.1 mmol/kg)
 - 5 – 20 ml

Perfusion Example

Myocardial Infarct Imaging
- Enhancement on delayed imaging = infarct
- Viability Images
 - Cine GRE
Myocardial Infarct Imaging

- 52-year-old diabetic woman
 - History of prior MI
 - 4 day history of nausea/GI symptoms

- Interpretation:
 - Old anterior wall infarct
 - New inferior infarct (RCA disease)

Myocardial Viability

- Contrast-enhanced magnetic resonance imaging (MRI) to identify reversible myocardial damage

Set-up
- ECG leads
 - 20 – 30 ml Gd
- Axial HASTE
- Scans for double oblique
- Inject Gd
 - Optional: Perfusion (+ stress)
- Cine GRE
 - Short and long axes
- Viability (scar)

Viability Protocol: 30 min

- Conventional Viability sequences
 - CHOOSE TI (Inversion Time)
 - IR turboFLASH
 - IR true FISP (1 – 3 slices/BH)
 - New sequences
 - Single shot IR true FISP
 - 3D IR turboFLASH
 - 3D IR true FISP
 - Phase-Sensitive IR Viability

Delayed Hyperenhancement

- Causes
 - Subacute/Chronic myocardial infarct
 - Acute myocardial infarct
 - Hypertrophic cardiomyopathy*
 - Sarcoidosis*
 - Acute myocarditis*

*Patchy distribution differentiates these from coronary causes which arise from subendocardial surface and extend to subepicardial region

TTC MRI

Gd-DTPA for cardiac MRI is off-label application
Cine IR True FISP to select TI

Optimal TI

Infarct

Normal

TI = 170 ms

TI = 203 ms

TI = 238 ms

TI = 275 ms

12 sec BH

Viability: 5 breath holds

2D IR True FISP (9 sl/3 BH)

3 sl/BH

Viability: 1 breath hold

2D IR True FISP (9 sl/3 BH)

3D IR True FISP (24 x 4mm BH)

Viability Case: Interpretation

- Subendocardial infarct extends along entire anterior wall/apex, septum, lateral wall (LAD)
- Additional foci in inferolateral base (LCx)

- Impression:
 Salvageable myocardium LAD and circumflex territory

Real-time True FISP

Viability

CAD: Interpretation

- 17 segment interpretation

Cerqueira MD et al., Circulation 2002; 105:539
Clinical applications
- Hypokinesis: Nonviable vs. Hibernating?
 - Is revascularization indicated?
- Equivocal scintigraphy or echocardiography
 - Attenuation artifacts/inadequate window
 - Abnormality too subtle/subendocardial infarct
- Acute chest pain, r/o MI

Case: 76-year-old man with DOE
- Stress-rest Sestamibi
 - Normal wall motion
 - EF 67%
 - Fixed defect anterior wall
 - Infarct vs. Attenuation?

Interpretation:
- Normal wall motion
- EF 70%
- Subendocardial infarct
- LAD territory
- Coronary Cath
 - 3 vessel disease
 - Severe stenosis of 1st diagonal (off LAD)

Lee VS et al, Radiology, 2004

Overview
- Safety Issues
- Imaging Planes
- Clinical Protocols: A How To ...
 - Cardiac Morphology and Masses
 - Valvular Disease
 - LV Function
 - Ischemic Heart Disease
NYU Body/CV MR Imaging

Genevieve Bennett, MD
Gary Israel, MD
Elizabeth Flecht, MD
Barbara Srichai, MD
Bachir Taouli, MD
Leon Axel, PhD, MD
Qun Chen, PhD
Gary Johnson, PhD
Ray Lee, PhD
Vinay Pai, PhD
Stephen Drew, MD
Ruth Lim, MD
Tejas Parikh, MD
Minnie Kaur, MD

ISMRM Clinical MRI Course: Cardiac Protocols

Vivian S. Lee, M.D., Ph.D.
Professor and Vice Chair of Research
Department of Radiology
New York University Medical Center

www.med.nyu.edu/mri