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Effects of Large Diffusion-Weighting: Measurements of water diffusion using MRI may be used to
study the architecture (geometry and order) of tissue microstructure. The diffusion tensor is a relatively
simple and elegant model of water diffusion [1]. This model assumes that the distribution of diffusion
displacements (R = R;-R) for a given diffusion time, A, is Gaussian,
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which results in a mono-exponential decay with diffusion-weighting
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where D is the diffusion tensor, (::] is the unit vector describing the gradient orientation, S, is the signal

without diffusion weighting, and b is the amount of diffusion weighting.

The diffusion tensor is a good model of the diffusion-weighted signal behavior for low levels of
diffusion weighting (e.g., b < 1500 s/mmz). However, the diffusion tensor model does not appear to be
consistently accurate in describing the signal behavior for higher levels of diffusion-weighting (e.g., b >
2000 s/mm?). The problems with the simple diffusion tensor model arise from two sources — (1) apparent
“fast” and “slow” diffusing components [2,3] that cause the signal decay with diffusion-weighting to appear
bi-exponential; and (2) partial volume averaging [4] between tissue groups with distinct diffusion tensor
properties (e.g., crossing white matter (WM) tracts, averaging between WM and gray matter tissues). The
fast and slow diffusion signals are likely to arise from local restriction effects from cellular membranes
although some have hypothesized that these signals correspond to intra- and extra-cellular diffusion.

The effect of partial volume averaging causes ambiguities in the interpretation of diffusion tensor
measurements. Whereas the diffusion anisotropy is generally assumed to be high in white matter,
regions of crossing white matter tracts will have artifactually low diffusion anisotropy. Consequently, in
regions with complex white matter organization, changes or differences in diffusion tensor measures may
reflect either changes in either the tissue microstructure or the partial volume averaging components. As
the diffusion-weighting is increased the profiles of apparent diffusivity reveal non-Gaussian diffusion
behavior in voxels with partial volume averaging.

A growing number of strategies have been developed for measuring and interpreting complex
diffusion behavior (see Table 1). The methods vary in their acquisition sampling and analysis
approaches. For all of the approaches described here, increasing the maximum diffusion-weighting will
improve the characterization of both the slow diffusion components and the partial volume effects,
although the measurement SNR will be decreased.
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Table 1. Methods for High DW Diffusion Imagnig

Technique | Full Name Refs | Description ~ Ne
BEDI Bi-Exponential Diffusion 2,3 Bi-exponential model of DW signal 16 - 60
Imaging
MDTI Multiple DTI 5,6 Two tensor model — fast/slow diffusion 70-192.
DSl Diffusion Spectrum 12, Empiral model-free  estimation of diffusion Typically
Imaging 13 displacements using g-space Ne>400
HARDI High Angular Resolution 7,8 Estimate ADC profile versus encoding angle 43 - 60
Diffusion Imaging
GDTI Generalized DTI 9,10 | Higher order tensor model of HARDI data 81-200
QBI g-Ball Imaging 11 Estimation of displacement distribution based upon 253
HARDI data
CHARMED | Combined Hindered and 14 g-space derived model of hindered and restritcted 169
Restricted Model of Diffusion (fast/slow) diffusion
HYDI Hybrid Diffusion Imaging 15 Estimates DTI, DSI, and QBI w/ non-uniform g- 100-250
space sampling




Fast/Slow Diffusion Modeling: Diffusion-weighted measurements over a range of diffusion-weighting
have been used to estimate apparent fast and slow components of both apparent diffusivities (BEDI: bi-
exponential diffusion imaging) and diffusion tensors (MDTI: multiple diffusion tensor imaging) [2,5,6]. In
these cases, the measurements are fit to

S =, ((k)e ™8 + (1-K)e > 3)
where Dy and D are the fast and slow diffusion tensors, and k is the signal fraction from the fast
compartment. For a fixed diffusion encoding direction, the signal decay appears bi-exponential with
diffusion-weighting. Bi-exponential strategies are appropriate for the cases where there is no significant
partial voluming expected and when the diffusion may be modeled using a combination of narrow and
broad Gaussian distributions. As discussed earlier, partial volume effects (e.g., crossing WM fibers) will
significantly complicate the interpretation of fast and slow diffusing components. In addition, the
assignment of these components has been controversial.

High Angular Resolution Diffusion Imaging (HARDI): In order to better characterize the angular
diffusion features associated with crossing white matter tracts, several diffusion encoding approaches
have been developed that use a large number of encoding directions (N > 40 up to several hundred) at a
fixed level of diffusion-weighting [7,8]. Although HARDI studies have been reported with diffusion-
weighting as low as b = 1000 s/imm? [7], the separation of tract components will be much better for higher
diffusion-weighting. The original HARDI methods [7,8] estimated the profiles of apparent diffusion
coefficients and used spherical harmonic decomposition methods to estimate the complexity of the
diffusion profiles
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where Y are the spherical harmonic basis functions, * denotes complex conjugate, and a are the
coefficients. Higher order spherical harmonic basis functions represent signal terms that may correspond
to crossing white matter tracts in the voxel. The indices | and m refer to the order and degree of the
spherical harmonic basis, where | = 0 is isotropic, | = 2 is a single fiber, | = 4 are 2 fiber groups and | = 6
are 3 fiber groups. Odd orders of | do not correspond to meaningful diffusion measurements and are

generally assumed to be noise and artifacts. w W Wl .
The HARDI 3D diffusion profiles may also be N+t bV
modeled using generalized diffusion tensor imaging o & SR E &
(GDTI) [9,10] which use higher order tensor statistics : : : ; : \ { : X
to model the ADC profile. The GDTI methods i g : W\K e
prqposed by Liu et al. [9] demonstrate the impressive FEE R SN
ability to model asymmetrically bounded diffusion ettt b ENN N
behavior, although the method requires the accurate LR RN
measurement of the signal phase, which is nearly | Fig 1. Example QBI orientational density function
always discarded and may be difficult to obtain in (ODF) map for region at intersection of corpus callosum,
practice. One problem with these approaches is that corona radiata and superior longitudinal fasciculus.
in the case of crossing white matter tracts, the Regions of crossing WM tracts are clearly observed.

directions of maximum ADC do not necessarily correspond to the fiber directions.

One approach to this problem is the g-ball imaging (QBI) solution described by Tuch [11], which
estimates the orientational distribution function (ODF) based upon the Funk-Radon Transform. According
to this relationship, the ODF for a particular direction is equivalent to the circular integral about the
equator perpendicular to the direction

oor(f)= | . E@a) o' (5)

This integral requires that the diffusivities be interpolated over the entire surface of the sphere. Whereas
the peaks in the HARDI profile do not necessarily conform to the WM tract directions, the peaks in the
ODF profiles do in fact correspond to the specific WM tract direction. Since the ODF is estimated by
integrating several measurements together, the SNR of the ODF will be much higher than that of the ADC
values in the original HARDI.

Diffusion Spectrum Imaging (DSI): The fast/slow diffusion modeling and HARDI approaches represent




opposing approaches to complex diffusion characterization. The combination of high angular sampling at
multiple levels of diffusion weighting may be used to provide information about both fast/slow diffusion
and crossing WM tract orientations. The most basic approach for this application is diffusion spectrum
imaging (DSI) [12] which uses diffusion-weighted samples on a Cartesian g-space lattice, where q = yG§
is the diffusion-weighting wave-vector analogous to wave-vector k used in k-space sampling for MR
image acquisitions. An excellent discussion of g-space imaging is found in the text by Callaghan [13].
For a specified diffusion time, A, the probability distribution of diffusion displacements, P(R, A), is related
to the distribution of sampled diffusion-weighted signals in g-space, E(q, A), through a Fourier Transform:

P(R,A) = j E(q,A) €297 dq (6)

The derivations of g-space formalism assume that the widths of the diffusion-pulses, 3, are narrow relative
to the pulse spacing, A, such that 6 << A. The maximum gradient amplitudes on current clinical MRI
systems cause this assumption to be violated for diffusion spectrum imaging, since 5 ~ A. The effect of
this will be to slightly, but consistently underestimate the diffusion displacements, and the overall
distribution shape will be correct [12]. Note that relationship of DSI (g-space) to diffusion tensor imaging
is that P(R,A) is a multi-variate Gaussian (Equation (1)) and the diffusion-weighting factor is b = |q|*(A-8/3)
or b ~ |g|°A for small 8. The DSI approach yields empirical estimates of the distributions of diffusion
displacements (e.g., model free), which are described using the standard definitions of Fourier sampling
theory. The resolution of diffusion displacements (AR) is defined by the range of g-space samples: AR =
%|gmax|; @nd the alias-free range of displacements 2R = 1/Aq. If the range of g-space samples is too
small, then the measurement profile will be truncated, which will lead to Gibbs ringing in the reconstructed
diffusion displacement spectrum. This can be ameliorated by apodization with a Hanning or Hamming
window, at the cost of increased blurring of the diffusion distribution. Ideally the maximum |g| should be
large enough that the signal is near zero to minimize truncation effects. In adult white matter, this implies
that a maximum diffusion weighting of 14,000 s/mm® or more is necessary although bmax ~ 10,000
s/mm? are probably reasonable. A common concern with very high diffusion-weighting is that the image
SNR is very low. However, the Fourier transform associated with Equation (6) will improve the SNR by
the square root of the number of samples (e.g., 400 DSI samples will improve the SNR of the
displacement spectra by a factor of 20). Since the distributions of diffusion displacements are model
independent, the distributions may be challenging to quantify. Several features have been proposed
including the zero-displacement probability, P(R=0,A), which is higher in regions with more hindered or
restricted diffusion; the mean squared displacement,

MSD(A) = J' P(R,A) RP &°R, @)

which is related to the diffusivity; the kurtosis of the diffusion distribution, which highlights regions
significant slow diffusion; and the orientational distribution function (ODF) [12]:

ODF(T) = j PRT A)RP dR ®)

Note that this definition of ODF (Eq (5)) for DSl is derived differently for DSI than it is for QBI [11].

While Cartesian sampling facilitates the straightforward FFT for estimation of the displacement
densities, Cartesian sampling is not required. Recently, investigators have proposed non-Cartesian
sampling strategies of g-space including sampling on concentric spherical shells of constant |q| [14,15].
Assaf et al. then applied a model (CHARMED) of slow
and fast diffusing compartments to estimate what they
deemed as hindered and restricted diffusion [14]. Wu
et al. demonstrated that the concentric g-space shell
samples in hybrid diffusion imaging (HYDI) could be
used for DTI, DSI and QBI in the same experiment [15].

Applications of High Diffusion-Weighting: The
complexity and time required to perform advanced
diffusion imaging methods with high diffusion-weighting O byl
has limited the number of clinical and research studies 'r QS A y
relative to the work in diffusion tensor imaging. While Fig 2. Example P(R=0: A) and men Suared
studies with ~500 DW encoding measurements with b- | gisplacement maps from DSI study (N = 257; bmax =
values of 10,000 s/mm* or more may be capable of | 9000s/mm?




generating very interesting data on a small sample, they will not be very practical in a clinical setting
unless they can provide greatly increased clinical sensitivity and specificity. Studies with ~100 DW
encoding measurements are likely to be more feasible. The clinical significance of fast/slow diffusion
measurements is unclear. Only one published study to date [16] has specifically examined the effects of
pathology (ischemia) fast and slow diffusion components. Several small studies of hybrid DSI methods
have shown promise in being sensitive to white matter changes associated with multiple sclerosis [17],
autoimmune neuritis, and vascular dementia. Clearly, more studies are necessary to justify longer
imaging times than DTI.

White Matter Tractography:

In addition to providing information about the mean diffusivity
and anisotropy, diffusion imaging methods can also yield novel
information about the orientation of local anisotropic tissue
features such as bundles of white matter fascicles. In diffusion
tensor imaging, the direction of the major eigenvector, ey, is
generally assumed to be parallel to the direction of white
matter. This directional information can be visualized by
breaking down the major eigenvector into x, y and z
components, which can be represented using RGB colors —
e.g., Red = ey, = Right/Left; Green = e,y = Anterior/Posterior;
Blue = ey, = Inferior/Superior. Maps of WM tract direction can i =

be generated by weighting the RGB color map by an t':rf’ct%ri;ﬁa%gﬂ_elfﬁéorpﬂ”:]i?pge‘gggggp\t’vm
anisotropy measure such as FA [18]. For many applications, | sgreamline WMT is depicted in a region of
the use of color labeling is useful for identifying specific WM | corpus callosum. The trajectory is started
tracts and visualizing their rough trajectories. An alternative | from a single seed point and the path
strategy is white matter tractography (WMT), which uses the | Stimated atdiscrete steps.

directional information from diffusion measurements to estimate the trajectories of the white matter
pathways. WMT increases the specificity of WM pathway estimates and enables the 3D visualization of
these trajectories, which may be challenging using cross-sectional RGB maps.

Deterministic Tractography Algorithms: Most WMT algorithms estimate trajectories from a set of
“seed” points. Generally, WMT algorithms may be divided into two classes of algorithms — deterministic
(e.g., streamline) and probabilistic (see below). Streamline algorithms are based upon the equation:

dr = Vg dt 9)
where r() is the path and v, is the vector field that defines the local path direction. Typically, streamline
WMT algorithms use major eigenvector field to define the local trajectory directions vy, = €, at each step
[19-21]. Alternatively, tensor deflection (TEND) vy = DV, uses the entire diffusion tensor to define the
local trajectory direction [22]. The integration of deterministic pathways may be performed using simple
step-wise algorithms including FACT [19] and EuIer (e.g9., Ar = vy Ar) [20] integration, or more
continuous integration methods such as 2" or 4™ order Runge-Kutta [21], which enable more accurate
estimates of curved tracts.

Deterministic Tractography Errors: WMT can be visually stunning. However, one significant limitation
with WMT is that the errors in an estimated tract are generally unknown. Further, the visual aesthetic of
WMT, which look like actual white matter patterns, can potentially instill a false sense of confidence in
specific results. Unfortunately, there are many potential sources of error that can confound WMT results.
Very small perturbations in the image data (i.e., noise, distortion, ghosting, etc.) may lead to significant
errors in a complex tensor field such as the brain. Recent studies have shown that the dispersion in tract
estimates <Ax*> from image noise is roughly proportional to the distance (N'w, where N is the number of
voxels and w is voxel size) and inversely proportional to the squares of the eigenvalue differences
(AN =X, — X)) and SNR [23,24]

<AX?>=N-w2.E/(A}- SNRY? (10)
where E is a factor related to the diffusion tensor encoding scheme and the diffusion tensor orientation,
and j = 2,3. Further, the tract dispersion is also effected by the local divergence of the tensor field [24].
Even in the complete absence of noise and image artifacts, most current WMT methods with DTI cannot
accurately map WM pathways in regions with crossing fibers. New diffusion imaging methods such as



DSI and QBI described above are capable of resolving regions
of white matter crossing and may ultimately improve WMT in
regions of complex WM.

Probabilistic  Tractography  Algorithms: Although
deterministic streamline algorithms are nice tools for visualizing | [RFEE—. " CSRNNN—_—— U
WM patterns, they provide very little information about the y
reliability of specific results and are susceptible to generating
highly errant results from small errors at a single step.
Probabilistic tractography algorithms can overcome some of
these limitations. Most probabilistic WMT algorithms are based
upon some sort of iterative Monte Carlo approach where
multiple trajectories are generated from the seed points with i
random perturbations to the trajectory directions. __Model based Fi'g 4. Probabilistic bootétrap ractography
tI'aC'[Ogl'aphy a|g0r|tth InC|Ude PICO (PI’Obablhty Index Of from a sing|e seed point in the corpus
Connectivity [26]), RAVE (Random Vector [27]) and ProbTrack | callosum illustrating the tract dispersion
[25]. An alternative strategy is to use bootstrap resampling to issﬁgt%%inwt“hT\’r‘l’g"lsft"itrnt;‘:gdp';‘;‘;sdiﬁ‘;‘ifs
derive data-driven estimates _of p_robablllstlc tractography (e.g., | o, probabi“ty' is shown using a hat color
BOOT-TRAC [28]) The main d|fference betWeen m0de| and scale. The dispersion increases with
data-driven approaches is that the variance of the data driven | distance from the seed.

approaches will include the effects of variance in the actual data

(e.g., effects of physiologic and artifact noise), not just an idealized model. All of these algorithms create
a distribution of tracts, which can be used to estimate the probability of connectivity for the tractography
algorithm. The connection probabilities may be used as a surrogate measure of WMT confidence. This
connection probability may be used to segment structures such as the thalamus, cerebral peduncles,
corpus callosum, and cortex according to patterns of maximum connectivity.

Applications of Tractography: WMT has several potential applications. (1) WMT offers the unique
ability to non-invasively visualize the organization of specific WM pathways in individual subjects. To
date, most studies of white matter neuroanatomy have been conducted using either anatomic dissection
methods or axonal tracer studies in animals. Many recent studies have demonstrated that WMT may be
used to generate tract reconstructions that are consistent with known neuroanatomy [e.g., 29-32].
However, a common criticism is that the validation of these results are missing. This concern may be
addressed in two approaches — compare WMT and histopathological measurements in animal models;
and develop and apply measures of WMT confidence that may be used to estimate the reliability of a
specific tractography result. It should also be noted that most neuroimaging results must be interpreted
without validation. (2) WMT may be used to segment specific WM pathways or portions of WM pathways.
This will enable tract-specific measurements such as tract volume, cross-sectional dimensions, and the
statistics of quantitative measurements within the pathways such as the mean diffusivity, and the
fractional anisotropy (FA). Several studies have used WMT to perform measurements in specific WM
pathways: e.g., fronto-temporal connections in schizophrenia [33]; pyramidal tract development in
newborns [39], and the pyramidal tracts and corpus callosum in multiple sclerosis [34]. (3) WMT may be
used to visualize specific white matter patterns relative to pathology including brain tumors, M.S. lesions,
and vascular malformations. The increased specificity of WM trajectories may ultimately be useful for
planning surgeries [35] as well as following the patterns of
brain reorganization after surgery [36]. However, it should be
noted that WMT reconstructions still need further validation
before advocating its use as a tool for surgical guidance on a
widespread basis. Indeed one recent study demonstrated
that their WMT method underestimated the dimensions of the
specific tract of interest [37]. Other studies have started to
examine the relationship between specific white matter tracts
affected by multiple sclerosis lesions and specific clinical Fig 5. Parcellation of major white matter

impairments [38]. pathways using white matter tractography.




Available WMT Software Packages: This is neither a comprehensive list nor an endorsement.

DTI Studio (FACT) http://cmrm.med.jhmi.edu/

FDT (ProbTrack) http://www.fmrib.ox.ac.uk/analysis/research/fdt/

TRAvis http://brainimaging.waisman.wisc.edu/~mlazar/TRAVIS.html

BioTensor (Tensorlines) http://www.sci.utah.edu/cibc/software/index.html#biotensor

VtkDTMRI http://slicer.org/vtk/Modules/vtkDTMRI/html/index.htm|

DoDTI http://neurocimage.yonsei.ac.kr/dodti/

DTI-Query http://graphics.stanford.edu/projects/dti/dti-query/
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