
CONCEPTS OF PROBE DESIGN II. DESIGN OF TARGET-SPECIFIC PROBES 

 

Authors: Willem J. Mulder, MSc, Geralda A.F. van Tilborg, MSc, Gustav J. Strijkers, PhD, and Klaas 

Nicolay, PhD 

Affiliation: Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of 

Technology, Eindhoven, The Netherlands 

 

Introduction 

Biomedical imaging plays a central role in clinical diagnostics, since it provides a wealth of information on 

the morphological, physiological and metabolic hallmarks of disease processes (1-3). The traditional use of 

diagnostic imaging, however, often depends on the detection of tissue changes that occur in a late stage of 

disease progression. The development of procedures, which allow the detection of disease in a more early 

stage, could therefore have a major impact in health care (4). Interventions might be arranged well before 

the development of severe symptoms, which will have a positive impact on disease outcome. Furthermore, 

the current diagnostic tools often lack specificity, i.e., the disease-related alterations in tissue status might 

in principle result from several mechanisms. The differentiation between the possible molecular causes is 

of major importance, as it will have an impact on the interventions that are optimal to treat the disease and 

may also make a more individualized treatment possible. The more early detection of disease as well as the 

increased specificity of diagnostic procedures calls for sensitive and marker-specific imaging techniques. 

This is the domain of the rapidly expanding field of molecular imaging, in which new agents are combined 

with traditional imaging techniques to visualize biochemical pathways at the molecular and cellular level 

(2,5-7). Molecular imaging requires detailed knowledge of the molecular and cellular processes that are at 

the basis of the disease. Once a biochemical marker of the disease has been identified, a molecular imaging 

probe should be designed. The probe should be able to “home” to the marker of interest following delivery 

into the organism in order to allow for the indirect visualization of marker distribution with the imaging 

technique of choice. The present contribution deals with the technologies that are used to equip the 

molecular imaging probes with target specificity (8-10). Examples will be drawn from the field of 

molecular and cellular MR imaging. Nevertheless, many of the design criteria are also relevant for other 

imaging modalities.  

 

MRI and traditional contrast agents 

MRI yields high-resolution three-dimensional images of biological specimens. Its remarkable soft tissue 

contrast results from endogenous differences in water content, T1 and T2 relaxation times, and various other 

physicochemical properties of tissue water (11). The information content of MRI can be further enhanced 

by the use of exogenous contrast agents, including high-stability chelates of the Gd
3+

-ion such as Gd-DTPA 

(12,13), the workhorse of traditional contrast-enhanced MRI. Such low-molecular weight Gd-based 

contrast agents are usually detected with dynamic T1-weighted MRI and provide important information on 

tissue status, including perfusion and vascular permeability. T2- and T2*-shortening agents that are most 

often based on crystalline FeO nano-particles (typically ranging from 10-50 nm in diameter) are also 

frequently used in biomedical research (14). These agents can be effectively detected with T2- or T2*-

weighted MRI and they are among others used as blood pool agents, because of their prolonged blood 

plasma half lives. The above contrast agents possess no targeting moiety and therefore have limited value 

per se in target-specific MRI. Nevertheless, FeO particles have proven to be very useful for the 

measurement of macrophage activity in relation to inflammatory processes that play a key role in many 

diseases, including atherosclerosis (15,16) and multiple sclerosis (17). Activated macrophages appear to 

have a high capacity to internalize FeO particles, despite of the fact that the particles carry no specific 

macrophage-targeting devices.   

 

MRI and target-specific contrast agents 

The development of MR contrast agents (CA), which are targeted to specific molecular entities, could 

significantly enhance the utility of MR by combining the noninvasiveness and high spatial resolution of 

traditional MRI with the localization of specific molecular markers. Due to the inherently low sensitivity of 

MRI (in comparison with nuclear and optical imaging techniques), high local concentrations of the CA at 

the target site are required to generate significant changes in MR image intensity. To meet these 

requirements, the CA should associate to its biological target with high affinity and specificity. This is to a 

large extent determined by the nature of the targeting device. A CA that is conjugated with an antibody 



directed against the biological marker of choice will usually achieve a higher binding specificity and 

affinity than a short peptide sequence. The targeted CA should have an as high as possible relaxivity. The 

relaxivities r1 and r2 of a CA (in units of mM
-1

s
-1

) define the efficiency by which the CA shortens the T1 

and T2 relaxation times of water, respectively, as compared to the pre-contrast situation. The higher the 

relaxivity, the lower the minimal target concentration that can be reliably detected. In the case of a 

relatively high target concentration, the demand for a very high relaxivity is obviously less stringent. An 

example of that is the MRI-based visualization of fibrin, which is abundantly present in thrombi and can be 

detected with the use of fibrin-targeted peptides that are conjugated with 4 Gd-DTPA moieties (18-20). 

For CA’s that are to be used for T1-weighted MRI of sparse biological markers, there are two basic 

strategies to boost the relaxivity r1. First, the r1 can be increased by conjugating a high number of Gd-

chelates to a macromolecular scaffold, which can, for example, be based on dendrimers (21,22), or proteins 

(23), or by the use of nano-particles that can contain a high payload of Gd-chelates. An example of the 

latter are liposomes, which can be prepared in a typical size range from 50 to 250 nm and can 

accommodate up to several hundred thousand lipids with a Gd-containing polar head group (24-27). The 

above constructs can readily be equipped with optical (e.g., fluorescent) labels for combined MRI and 

optical imaging studies. Secondly, the r1 can be increased by increasing the rotation correlation time, τc, of 

the CA construct. The conjugation of the Gd-chelate to a higher generation dendrimer (21,22,28,29) or to a 

protein (23) leads to an increased effective τc of the CA as compared to the parent low-molecular weight 

Gd-chelate and this can result in an up to four-fold increase in the ionic r1 (22). Smaller but still significant 

increases in r1 have been observed for membrane-based CA nano-particles (25,27,30-32). The most popular 

and most effective T2- and T2*-shortening MRI CA’s are based on nano-particles prepared from crystalline 

FeO. These have a very high r2 and can be prepared in a range of sizes and with different coatings, 

depending on the application (14). 

Apart from the relaxivity, the target specificity and affinity and the type of wanted contrast, many other 

criteria for the design of the CA constructs have to be considered. These include the pharmacokinetics, 

pharmacology and biological safety of the CA material, the location of the biological target (e.g., intra- 

versus extravascular), the possible need for combining MRI-based molecular imaging with a 

complimentary technique for multi-modality imaging, or the wish to combine target-specific imaging with 

target-specific drug delivery. These aspects are beyond the scope of the present overview. 

 

Introducing target specificity by linking ligands to MRI contrast agents 

Several chemical conjugation strategies have been described to link a variety of targeting ligands to MRI 

contrast agents (33-35). These targeting ligands may include monoclonal antibodies (mAb), antibody 

fragments (Fab), (recombinant) proteins, peptides, peptidomimetics, sugars, and small molecules. Roughly, 

the ligand-CA coupling can be divided into non-covalent linkage and covalent linkage.  

Non-covalent coupling is usually done with an avidin-biotin linkage. Avidin is a tetrameric protein with a 

molecular weight of 68 kDa and is capable of strongly binding 4 biotins (KA ≈ 1.7 x 10
15

 M
-1

). The biotin-

avidin interaction has been exploited for conjugating different types of MRI contrast agents with 

biotinylated proteins or peptides. For instance, conjugates of avidin and Gd-DTPA were used to target 

tumor cells pre labelled with biotinylated anti-HER-2/neu antibodies (36). Pre-formed conjugates of MRI 

nanoparticles and targeting ligands have also been used to e.g. magnetically label cells for MRI (37), as 

well as to actively target the nanoparticle to a specific receptor in vivo. The latter approach was used for the 

detection of the avb3 integrin on angiogenic blood vessels in tumor bearing rabbits (30). This non-covalent 

conjugation method is schematically depicted in Figure 1B. A nanoparticle equipped with several biotin 

molecules is first incubated with avidin. In a second step the particle-avidin conjugate is incubated with a 

biotinylated ligand, e.g. a peptide or an antibody. Although this method is simple and effective, the 

introduction of avidin in the conjugate has certain drawbacks. First, the size of the conjugate will increase 

by using avidin. More importantly, the immunogenic properties and the fast clearance of avidin by the liver 

have to be considered. In fact, this property of avidin can be used to an advantage to chase and clear 

antibodies (38) and MRI contrast agents from the circulation (23,39). Covalently linking the ligand to the 

contrast agent directly would lead to a smaller conjugate, which has more favorable pharmacokinetic 

properties. Several methods have been described. For dextran coated iron oxide particles amination can be 

achieved by incubating the nanoparticles with ammonia. Subsequently, these amines can be activated for 

conjugation to thiol (SH) exposing ligands, e.g. with SPDP (40,41) or SIA (42). Dextran-coated iron oxide 

nanoparticles conjugated to human holo-transferrin (Tf) have been used to image transgene expression in 

tumor bearing mice (43). Alternatively, maleimide containing entities, e.g. incorporated in lipidic  



 
 

 

Figure 1. Strategies for the conjugation of targeting ligands to MRI contrast agents. (A) Introducing thiol-

groups in (I) proteins or antibodies, and (II) peptides. (III) Protein and peptide with free cystein. (IV) 

Targeting ligands with a functional group, i.e. thiol or biotin. (B) Schematic representation of avidin-biotin 

linkage of a ligand to a lipidic naoparticle. (C) Schematic representation of maleimide-thiol linkage of a 

ligand to a lipidic naoparticle. 

 

nanoparticles, may be used to directly link thiol exposing ligands to the MRI contrast agent (25,26). Both 

techniques require the ligand to expose a thiol (SH), necessary for the bond formation. Proteins, antibody 

(fragments), and peptides exposing a free cystein can directly be used for coupling to maleimide (Figure 1A 

III). Peptides, synthesized with a protective terminal thioacetate group, can be activated upon deacetylation 

with hydroxylamine (Figure 1A II). This results in the conversion of the thioacetate into a thiol group. The 

same strategy is used for proteins that are activated with succinimidyl-S-acetyl thioacetate (SATA) (Figure 

1A I). SATA is coupled to free amine groups present in the protein, and with hydroxylamine the thioacetate 

moiety is converted into a free thiol group. The thiol-ligands react with maleimide containing particles and 

form a covalent thioether linkage, like schematically depicted in Figure 1C. 

Other approaches that have been used to introduce target specificity are the incorporation of amphiphilic 

targeting proteins or peptides in the lipid bilayer of liposomes or the use of amhiphiles with a functional 

moiety, like a peptidomimetic in lipidic MRI nanoparticles (44,45). Furthermore, bioconjugates have been 

synthesized with small molecular ligands. Examples of such conjugates are Gd-DTPA-B(sLex)A, a Gd-

DTPA based MRI contrast agent specific for the E-selectin receptor by conjugation to a Sialyl Lewis X 

mimetic (46) and conjugates of multimodal cyclic peptide–Gd(III)DTPA molecules equipped with either a 

fluorescent label (29) or biotin (21). Lastly, endogenous materials may be used as a CA vehicle. An 

example of such a MRI contrast agent is a bimodal probe based on high-density lipoprotein (HDL). HDL 

was made detectable for combined MRI and optical studies via the incorporation of paramagnetic and 

fluorescent lipids (47). A very elegant aspect of this HDL-based approach is that it does not require the 

synthesis and use of exogenous material, since isolated endogenous HDL may be used to create the contrast 

material. 

 



Target specific contrast agents; the smart approach 

Smart contrast agents, also referred to as responsive or activated contrast agents, are agents that undergo a 

large change in relaxivity upon activation. Such agents can be considered target specific in case they 

respond on e.g. transgene expression. A key publication in this field is from Louie et al. (48). These authors 

developed a Gd
3+

 chelating complex (EgadMe) which, in the presence of the enzyme β-galactosidase, 

undergoes a sizable increase in relaxivity. In its inactive form water is not accessible to Gd
3+

 because of 

blockage with a sugar moiety. When the enzyme cleaves off the sugar water can directly coordinate with 

Gd
3+

 explaining the r1 increase. Peroxidase activity has been detected with MRI by using iron oxide 

nanoparticles conjugated with phenolic molecules that crosslink in the presence of peroxidases. This leads 

to the self-assembly of the nanoparticles (49), which results in a concentration dependent decrease of T2. A 

novel approach on smart MRI contrast agents uses endogenous iron to generate contrast. An adenoviral 

construct was used for the constitutive expression of human ferritin (50). The transfected cells become 

specifically superparamagnetic as they sequester endogenous iron from the organism. In vivo tests were 

done on mice, in which the virus was injected into the brains of the live animals. A strong MRI contrast at 

the site of injection was found within several days. 

 

Conclusion 

MRI is rapidly gaining importance as a molecular imaging technology, which adds a completely new 

dimension to the structural and functional information that the technique is renowned for. There are many 

ways, in which MRI contrast agents for specific biological targets can be prepared. The main challenge is 

to design effective contrast agents for intracellular targets. 
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