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The increasing development of novel gene and targeted therapies for treating tumors has 

necessitated the development of imaging approaches to determine their efficacy in preclinical 
animal models.  This overview will provide selected examples of using imaging for quantitating 
tumor cell kill (anatomical and diffusion MRI), early treatment-induced changes in tumor 
cellularity/metabolism (diffusion and sodium MRI, PET), gene expression levels (19F MRS) and 
vascular effects (perfusion MRI). 

The use of in vitro screening assays to quantify the effectiveness of anticancer agents are 
widely used to rapidly evaluate a wide variety of agents and doses.  Drugs which show 
therapeutic activity are then evaluated against animal tumor models.  For orthotopic tumor 
models, animal survival, colony-forming efficiency (CFE) assays of cells disaggregated from 
solid tumors, and measurements of excised tumor weights have been used to quantify efficacy 
[1] since serial measurements of tumor growth rates are difficult to obtain.  The myriad of new 
antineoplastic agents on the horizon requiring in vivo testing underscores the need for improved 
high-throughput surrogate markers for preclinical evaluation of therapeutic efficacy. The 
application of non-invasive imaging methods for quantitating the effects of experimental 
treatments could accelerate the process of drug development for translation to clinical trials [2-
3]. 
 
Overview 

Imaging cancer patients is an essential aspect of clinical care.  However, the significant 
advances in molecular biology along with the imaging sciences have provided additional unique 
opportunities for interrelated applications between these two research areas.  The combination of 
molecular biology and the imaging sciences has melded into a new research field termed 
‘molecular imaging’ which crosses into all imaging modalities used in cancer including magnetic 
resonance imaging (MRI) [4-18], radionuclide imaging [19-27], X-ray computed tomography 
(CT) [28, 29] and optical imaging methods [30-42]. This overview will cover selected examples 
of recent work using imaging to assess therapeutic efficacy by non-invasive quantitation of cell 
kill, early detection of therapeutic response, detection of spatial heterogeneity of tumor response 
and quantitation of transgene expression.  Examples of the use of bioluminescence imaging 
(BLI) and PET for in vivo evaluation of treatment and for detection of transgene expression will 
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also presented.  The successful application of these imaging technologies to assess experimental 
interventions of in vivo tumor models can provide unique insights related to therapeutic efficacy. 

 
Quantitation of Tumor Cell Kill using Imaging 

Measurements of orthotopic tumor volumes in individual animals over time is not 
possible without the use of imaging technologies, hence the majority of studies evaluate 
therapeutic response using enhancement of animal survival time.  This approach has proved 
valuable for in vivo testing of therapeutic approaches, but requires large numbers of animals due 
to variations in tumor growth kinetics between animals.  MRI has been reported [2] for non-
invasively monitoring the growth kinetics and therapeutic response of the intracranial rat 9L 
brain tumor model [1].  This approach allows for quantitation of tumor cell kill in individual 
animals [2].  In brief, log(cell kill)=log10(Vpre/Vpost) where V represents the tumor volume 
obtained from MRI measurements before (pre) and following (post) therapeutic intervention.  As 
each animal serves as their own pre-treatment control, the use of MRI provides for a very 
sensitive approach (quantitation of >0.1 log kill can be detected). The use of anatomical MRI in 
this fashion is applicable to a wide variety of therapeutic interventions and tumor models for 
facilitating evaluation of experimental interventions.  

Application of optical-based methods for in vivo tumor detection and evaluation of 
treatments is an active area of research. Fluorescence and bioluminescence optical imaging 
approaches for cancer detection and monitoring treatment are very promising. The use of BLI 
necessitates detection of light emitted from expression of the bioluminescent enzyme firefly 
luciferase (Luc) from tumor cells [10, 39].  BLI has been shown to allow for quantification of 
therapeutic efficacy in orthotopic 9L brain tumors in rats [10].  Expression of Luc in 9L tumor 
cells (9Lluc) was accomplished in this study and implantation of 9Lluc cells into rats resulted in 
tumors which could be visualized by MRI as well as BLI.  Quantitative plots of MRI volumetric 
data and BLI photon counts over time was found useful for calculating the log(cell kill) as 
described above. Comparison of log kill values using these two imaging techniques revealed 
similar results [10]. 
 
Diffusion MRI 

The clinical value of conventional MRI stems from the ability to non-invasively observe 
the gross tumor morphology and follow changes over time and/or treatment. There remains large 
untapped potential for using MR technology to provide significant functional, structural and 
molecular information. Such information may be derived from quantitation of tissue properties 
which reflect, for example, perfusion dynamics, oxygenation levels, biochemistry/metabolism, 
cellularity and levels of gene expression. 

One very interesting application of MRI is its use to follow therapeutic-induced 
macroscopic changes in tumors.  Since molecular and cellular changes typically precede 
observable macroscopic changes in gross tumor size, the use of MRI to quantify therapeutic-
induced changes in tumor cellularity using a surrogate marker (i.e. water diffusion) has been 
reported [4, 7, 43-50].  The use of water diffusion as a surrogate marker to probe tissue is 
compelling since this parameter is strongly affected by viscosity and membrane permeability 
between intra- and extracellular compartments, active transport and flow, and directionality of 
tissue/cellular structures that impede or enhance mobility.  Successful treatment of tumors can 
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result in significant damage and/or killing of cells thus altering cell membrane integrity.  This 
has a net effect of increasing the fractional volume of the interstitial space due to apoptotic body 
formation and cell loss resulting in an increase in the mobility (diffusion) of water within the 
damaged tumor tissue.  Diffusibility of tissue water in vivo can be non-invasively quantified as 
an apparent diffusion coefficient (ADC) using diffusion MRI where the MR signal intensity is 
made dependent on water mobility by application of additional pulsed magnetic field gradients 
to the MR sequence [43].  Quantitation of ADC values can be obtained since individual nuclear 
spins of water molecules within the tumor tissue accumulate a phase shift proportional to their 
spatial position within the magnetic field gradient.  These water molecules are then given an 
evolution time to diffuse followed by application of an identical, but inverse, pulse which results 
in a complete refocusing of stationary spins, while the mobile spins (those undergoing movement 
due to diffusion) are refocused incompletely.  The net result is that the paired gradient pulses 
attenuate the signal in proportion to the local water mobility within that region of tissue. 
Quantitative measurements of diffusion reported as an ADC are obtained by measuring signal 
attenuation as a function of varying gradient strength and evolution time.  The use of diffusion 
MRI for monitoring early events in tumor treatment in a variety of rodent tumor models [4, 7, 
13, 43-48] has been reported along with clinical translation to patients [48-50].   The use of 
diffusion MRI has potential for monitoring early changes in tumors which may be reflective of 
treatment response.   It is envisioned that imaging approaches such as this may assist physicians 
in tailoring treatments for individual patients and allow for alternative therapies to be attempted 
in a more timely fashion if a tumor is found to be resistant.  This approach also provides the 
significant potential of assessing the regional/spatial heterogeneity of therapeutic response 
within a tumor. The heterogeneity of response may be accentuated in applications involving 
direct intratumoral administration of the therapeutic agent as is done in certain therapeutic 
protocols involving cancer gene therapy. 
 
Imaging of Cancer Gene Therapy 

The goal of cancer gene therapy is to overcome the dose-limiting systemic toxicity of 
chemotherapy by introducing a gene into tumor cells which encodes for an enzyme that converts 
low-toxicity prodrugs into potent cytotoxic agents.  The effectiveness of this approach depends 
on sufficient transgene expression and localized conversion of a prodrug to the cytotoxic 
compound, the relative sensitivity of the tumor to this agent and finally the ability of the 
cytotoxic agent to reach a majority of the tumor cells.  Non-invasive assessment of therapeutic 
response and correlation of the location, magnitude and duration of transgene expression would 
be useful in facilitating optimization of gene transfer protocols, vector development and prodrug 
dosing schedules. 
 
Imaging gene therapy response 

Diffusion MRI has been shown to detect treatment-induced changes to the adenoviral 
delivered yeast cytosine deaminase (yCD) gene therapy paradigm [13, 46].  The prodrug used in 
these studies was Flucytosine (5-fluorocytosine, 5-FC).  5-FC itself does not elicit cytotoxicity, 
and its efficacy depends on the ability of the microbial enzyme CD to convert 5-FC to the 
antimetabolite 5-fluorouracil (5-FU).  yCD is not found in mammals, thus providing 5-FC with a 
favorable therapeutic index.  Expression of the yCD gene specifically in tumor cells, followed by 
systemic administration of 5-FC resulted in the generation of 5-FU within the tumor.  This 
localized production of 5-FU chemotherapy avoids the systemic toxicity associated with 
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intravenous 5-FU therapy and may improve outcomes by achieving higher intratumoral 5-FU 
concentrations.  Changes in diffusion values occurred prior to shrinkage of the tumor volume 
indicating that this imaging approach can detect early changes in the tumor mass following 
initiation of gene therapy.  Moreover, a symmetrical shift towards higher diffusion values for the 
entire tumor mass was observed which indicated that the entire tumor mass was affected by this 
therapy.  Tumor images revealed a relatively uniform pattern of diffusion values indicating a 
uniform (untreated or non-necrotic) distribution of cellular structures (e.g. intra- and 
extracellular space).  In contrast, animals treated identically except that the yCD gene was 
administered to the established intracerebral 9L tumor through a direct intratumoral injection of 
an adenoviral vector yielded an entirely different effect on the diffusion MR image.  The effects 
of 5-FC treatment on observed tumor diffusion changes were a heterogeneous distribution of 
bright voxels located throughout the tumor mass.  The interpretation of these images was that the 
bright areas (high diffusion) represented regions of yCD expression leading to conversion of 5-
FC to the cytotoxic product, 5-FU, with subsequent cell death leading to regions of focal 
necrosis.  In contrast to what was observed for untreated animals, histograms for the 5-FC-
treated animals broadened with a fraction of the histogram area moving to the right (higher 
diffusion).  The fraction of tumor tissue that exhibited an increase in diffusion was interpreted as 
the relative fraction of the tumor that is undergoing a significant therapeutic response.  The 
region of the histogram in the treated animal that did not increase was reported to reflect the cell 
fraction which was not exposed to sufficient 5-FU concentrations.  Overall, these studies 
revealed that diffusion MRI could provide an early, spatial indicator of animal tumor response.  
 
Imaging of transgene expression 

The use of non-invasive imaging technologies including radionuclide or optical reporters 
for evaluation and quantitation of transgene expression is an exciting area of research and the 
subject of reviews [15, 19, 20, 22, 39].  BLI has been shown to be useful for repetitive 
measurements of transgene expression for assessing gene expression levels following 
adenoviral-mediated delivery of yCD [13].  These types of imaging applications provide kinetic 
information related to temporal changes associated with in vivo gene expression to be non-
invasively probed over time.  For example, BLI was used to monitor the longevity of cells which 
produced the cytotoxic product, 5-FU (e.g. ‘factory’ cells) following intratumoral administration 
of an adenoviral vector containing both the yCD and luciferase transgenes.  Direct intratumoral 
injection of the yCD adenoviral vector was found to produce a heterogeneous distribution of 
yCD-positive cells within the 9L tumor mass.  The ability to follow transgene expression levels 
provides invaluable information related to the efficiency and kinetics of transgene expression 
which will assist in, for example, the optimization of prodrug dosing schedules.  These types of 
surrogate markers for gene expression using BLI and correlation with spatial heterogeneity and 
magnitude of therapeutic response using diffusion MRI facilitate preclinical optimization of gene 
therapy paradigms prior to translation into the clinical setting. 

 
Non-invasive Detection of Transgene Activity 

While optical and radionuclide imaging modalities are useful for evaluating transgene 
expression levels in living organisms, it is not feasible to specifically monitor individual 
metabolites using these techniques.  The use of fluorine-19 (19F) magnetic resonance 
spectroscopy (MRS) for quantitatively evaluating the yCD-catalyzed conversion of 5-FC to 5-
FU has recently been reported [47].  This approach is viable since the prodrug used in this 
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therapeutic paradigm contains a fluorine atom and is administered at concentrations which can 
be observed using in vivo 19F MRS. In this study, mice with subcutaneous HT29 or HT29/yCD 
carcinomas were injected with 5-FC. The presence of 5-FC could be non-invasively detected in 
HT29 tumors.  When tumors expressed yCD, enzymatic conversion of 5-FC to 5-FU could be 
observed dynamically over time with subsequent cellular conversion to additional metabolites. 
This approach is also quantitative since the area under the individual peaks can be converted to 
absolute metabolite concentration with appropriate calibration.  This allowed for 
pharmacokinetic modeling of 5-FC conversion to 5-FU by endogeneous enzymes based upon the 
dynamic data provided by 19F MRS which yielded measurements of yCD gene expression levels 
and the rate of fluoronucleoside synthesis in individual animals [47].  

 
Summary 

Non-invasive imaging of anatomy coupled with improved imaging of function 
(biochemistry, physiology and cellularity) and molecular events will yield significant 
improvement in our understanding of the biology and pathophysiology of neoplastic diseases.  
The current imaging technologies and reporter genes for investigating gene expression and 
molecular events in living tissue are propelling the burgeoning field of molecular imaging 
rapidly forward into vitally important areas of research in biology and medicine.  It is anticipated 
that molecular imaging will provide specific and complementary information which, when 
combined with anatomical imaging, will revolutionize our current applications of imaging in 
both drug discovery and clinical care.  
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