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Introduction 

Although the main clinical application for magnetic resonance spectroscopy (MRS) is 
currently in the diagnosis and evaluation of treatment response of neoplastic lesions of the brain, 
there are also potential applications in other neurological disorders such as stroke, multiple 
sclerosis (MS) and infectious diseases. Radiologists who interpret brain spectra should certainly 
be aware of the metabolic consequences of ischemia, demyelination and infectious processes in 
the brain. This presentation will review the metabolic changes associated with each of these 
conditions, and also highlight instances where MRS may be of clinical use.   

MR Spectroscopy in Stroke  

As cerebral blood flow (CBF) decreases, various processes related to cerebral homeostasis 
gradually fail (1). Once CBF has decreased below 15 to 20 ml/100g/min (2), the brain becomes 
ischemic, with the cessation of electrical function, and the switch of energy metabolism from 
aerobic pathway (oxidative phosphorylation) to anaerobic glycolysis with accumulation of 
lactate (Figure 1). Reported CBF thresholds may vary 
depending on the animal model used, the type of anesthesia, 
the type and duration of ischemia, arterial oxygenation and 
hematocrit, and the method used to measure CBF. However, 
in complete, global ischemia induced by cardiac arrest, 
lactate levels rise abruptly (3) and reach a steady state within 
10 minutes of cessation of blood flow. As lactate 
accumulates, the tissue may become acidotic (2). The "final" 
lactate concentration depends on a number of factors, but in 
particular on the pre-ischemic blood glucose and brain 
glycogen stores (3). Under normo-glycemic conditions, 
lactate may typically reach 10 to 12 mM (4). Pre-ischemic 
hyperglycemia may increase final lactate concentrations, and 
worsen eventual clinical outcome. If ischemia is incomplete, 
or reperfusion occurs, blood flow continues to supply glucose 
to the tissue which, if sufficiently damaged, is unable to metabolize it aerobically, and extremely 
high lactate concentrations may result (5).  
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In models of focal ischemia (where presumably CBF reductions are more moderate because 
of collateral circulation), the accumulation in lactate may often be significantly slower, 
increasing over a period of hours (6-9). For instance, in a permanent middle cerebral artery 
(MCA) occlusion model, lactate was observed to steadily increase up to 12 hours after induction 
of ischemia (8). In one report, it was also suggested that transient lactate elevations coincided 
with burst of cortical spreading depression (CSD) in peri-infarct tissue, which has been 
postulated to be a mechanism for infarct enlargement into surrounding tissues (9).  



In addition to the increase in lactate, NAA is observed to decrease following the onset of 
ischemia. Several papers have described an initial rapid decrease in NAA of about 10% within 
the first few minutes (7,10,11) followed by a slower decline in NAA with a time constant of 
hours. The permanent MCA occlusion study of Monsein et al. (8) reported a 50% reduction of 
NAA in the basal ganglia within 6 hours of ischemia. The reason for an initial sudden drop in 
NAA followed by a slower decline is unclear, but it might indicate that either (a) two different 
pools of NAA exist, or (b) a decrease in some other compound which co-resonates with NAA at 
2.02 ppm is occurring. It would appear that the rate of the subsequent, slower NAA decrease 
(like that of the lactate increase) is dependent on the degree of blood flow reduction to the 
ischemic tissue, but it is likely that the CBF thresholds for these processes are different, and that 
they also have different time constants. For instance, in both animal models of ischemia and in 
human stroke, elevated lactate in peri-infarct regions with near normal NAA levels has been 
reported (12,13). It is tempting to speculate that peri-infarct zone may represent an ischemic 
penumbra of dysfunctional tissue, with relative neuronal preservation, although at present this 
concept is largely untested.  

If the duration (and/or severity) of ischemia is short enough (e.g. no more than a few minutes 
in the case of complete ischemia), then most of the metabolic alterations described above are 
reversible, i.e. establishment of reperfusion will result in restoration of normal metabolite levels 
and function (14). Reperfusion after a longer period of ischemia may result in initial restoration 
of metabolite levels, only to be followed by secondary energy failure over the subsequent 24-48 
hours (7,15). As this secondary energy failure continues, or in the case of permanent ischemia, 
irreversible changes occur and the tissue will progress to neuronal loss, infarction and gliosis. 
These longer term changes can also be detected with MR spectroscopy; in the first two papers 
reporting MR spectroscopy of human brain infarction, NAA was completely absent from both 
infarcted tissue at 4 days (16) and at 10 months post stroke onset (17). As described above, other 
metabolic changes have also been reported in the chronic stage of stroke; these include increases 
of choline containing compounds (12) and mobile lipid signals (18).  

The earliest studies of 1H MRS of human stroke used single-voxel localization techniques 
(16,17). Using SV-MRS, it was found that elevated lactate and decreased N-acetyl aspartate 
(NAA) levels could be detected in cases of acute (<24 hours) (19-21), sub-acute (24 hours to 7 
days) (16,21,22) and chronic (> 7 days) (17,19,22-24) stroke. While SV techniques have short 
scan times and are widely available, they do not however provide information regarding the 
spatial distribution and extent of metabolic abnormalities, and require that the location of the 
ischemic or infarcted region be already known or visible on MR Imaging (MRI) studies. There 
have, therefore, been efforts to develop spectroscopic imaging (MRSI) methods for the study of 
cerebral ischemia, either in one (25,26) or two spatial dimensions (27,28), or using multi-slice 
2D MRSI (12,29).  



An example of an acute stroke patient 
scanned using multi-slice MRSI is shown 
in Figure 2; the patient presented with a 
left hemiparesis as the result of a complete 
occlusion of the right internal carotid 
artery (ICA), and diminished flow in the 
right middle cerebral artery (MCA). 
Conventional T2-weighted MR images 
were normal. However, proton MRSI 
revealed elevated lactate throughout much 
of the right MCA territory, with the 
highest concentration in the basal ganglia 
(Figure 2A). NAA was mildly reduced in the right basal ganglia compared to the left. A follow-
up MRI one week later showed a basal ganglia infarct but sparing of the cortical gray matter 
regions.  

While the metabolic changes observed by MRSI are large and may provide information not 
available from other imaging modalities, there are currently few clinical applications for MRSI 
in acute stroke. This is partly because of the difficulty of performing MRSI in acute stroke 
patients, and also the availability of diffusion and perfusion MRI (DWI/PWI) with high spatial 
and temporal resolution. However, the observation of lactate may help distinguish ischemic 
lesions from others that may mimic strokes, although the specificity may not be particularly 
high, since lactate can also be found in some tumors and inflammatory lesions as well.  

Potentially, MRSI could be incorporated into management decisions for patients with acute 
stroke, along with other imaging modalities such as DWI/PWI. For instance, a positive 
indication for thrombolysis might be the observation of a perfusion deficit, but still with high 
NAA levels indicating that infarction has not progressed too far. Another application (and 
perhaps more realistic, given the difficulty of performing MRSI in an acute setting) may be in 
evaluating patients with sub-acute stroke, or evaluating patients who may be eligible for other 
less urgent treatments such carotid endarterectomy (CEA) (30). For instance, in one study (31), a 
low ipsilateral ratio of NAA/Cho in patients who had symptomatic carotid artery occlusion was 
found to be predictive of recurrent or further ischemic events, suggesting that this finding may 
be useful in deciding who should have CEA. In comparing patients before and after CEA, it was 
found that the NAA/Cho ratio improved post CEA, but only in patients who did not have lactate 
(in non-infarcted tissue ipsilateral to the occlusion) prior to CEA (32). These results and others 
indicate that proton MRS may be useful for both the selection of patients and monitoring of sub-
acute stroke treatments, and in particular CEA.  

There have been relatively few studies of the prognostic value of MRS in acute stroke. 
Pereira et al. found significantly lower NAA in patients who ultimately died or were dependent 
on others for their daily living activities, as opposed to those who were able to live 
independently, and the prognostic value was enhanced by combining NAA levels with acute 
infarct volumes on T2 MRI (33). Similar results have also been found by Federico et al. (34), 



while Parsons et al. (35) found good predictive value based on acute measurements of lactate 
levels and lesion volume as detected by DWI. A recent study also found that elevated lactate 
levels in acute stroke patients with a PWI/DWI mismatch was predictive of subsequent infarct 
enlargement and poorer outcome than those with lower lactate levels (36).  

Multiple Sclerosis (MS) 

Multiple sclerosis is a chronic neurological disorder that affects the brain and spinal cord.  
The disease process, believed to be of autoimmune origin, involves inflammation, demyelination 
and axonal damage. Onset of MS typically occurs between the age of 20-50 years, is more 
common in women than men. The disease is characterized according to its clinical course as 
either relapsing-remitting (RR), secondary progressive (SP), primary progressive (PP) or 
progressive relapsing (37). 

There have been many studies of MS using MR spectroscopy. Early studies characterized the 
spectroscopic appearance of demyelinating plaques; it was found that they typically contained 
high levels of choline (Cho), myo-inositol (mI) and lipids, believed to be due to the 
accumulation of myelin membrane breakdown products (38), although possibly also due to 
inflammation (39). At the same time, NAA was decreased suggestive of axonal damage or 
dysfunction. These changes, particularly low NAA, do not necessarily indicate irreversible 
axonal damage, however, since, in some patients, restoration of NAA and resolution of the 
plaques is observed after recovery (40,41). It should be recognized that the spectroscopic 
appearance of an acute MS plaque may be different from a chronic one; it is generally believed 
that chronic, “burnt-out” plaques will show a reduction of all metabolites due to its decreased 
cellularity and increased water content, whereas acute plaques will show elevated Cho (and 
probably also myo-inositol levels) due to the presence of active demyelination (42).  

MRS also offers some insights into the pathology of MS, generally previously only available 
from post-mortem samples. For instance, even though MRI generally shows discrete lesions in 
most MS patients, studies using MRSI (43) or whole brain MRS (44) have often found decreased 
in NAA (and increased Cho) throughout the white matter, both in regions with and without 
visible abnormalities on conventional T2-weighted MRI scans, suggesting diffuse brain 
involvement. This is also confirmed by other MRI techniques sensitive to white matter 
pathology, such as diffusion tensor (DTI) or magnetization transfer (MT) imaging (45). This 
suggests that the lesions visible on conventional MRI are perhaps the areas of most severe 
involvement, but do not necessarily represent well the total disease burden within the brain. It 
has been found that MRSI measurements of NAA (or the ratio of NAA/Cr) over a large volume 
of brain tissue appear to correlate better with clinical disability scores, such as the Expanded 
Disability Status Scale (EDSS), than other measures derived from conventional MRI (46). 
Although there is some evidence that glial cells may contain NAA, overall, the general belief is 
that NAA is predominantly located in neurons, axons and dendrites within the mature brain (47). 
Therefore a correlation of brain NAA levels with EDSS indicates that MRS may provide a 
measure of axonal loss and/or dysfunction that is a good measure of disease burden in MS. 
Spectroscopic abnormalities (reduced NAA) may also be found in gray matter (48). These data 



also suggest that MRS may have a useful role in evaluating therapeutic response in MS, although 
to date it has received relatively little attention for this purpose. 

It has also been found that reductions in NAA occur early on in the course of MS, which is 
interesting since the traditional view of MS is that axonal loss occurs secondary to inflammatory 
demyelination. Therefore, early reductions in NAA support the hypothesis that axonal damage or 
dysfunction is in fact an early event in the disease process (49).   

Even though the spectroscopic features of MS have been very well characterized in the 
literature, to date there have been relatively few clinical applications of MRS in MS. Probably 
the most likely area of utility is in diagnosis, either early in the stage of the disease (when 
established diagnostic criteria are not yet fulfilled), or when a patient presents with one or more 
lesions on brain MRI that are of uncertain etiology. 

Early diagnosis can be difficult when patients present with some but not all symptoms 
characteristic of MS. The diagnosis is made on a combination of clinical findings (2 or more 
separate episodes of symptoms characteristic of MS), brain MRI, CSF testing for oligoclonal 
bands, antibodies against myelin proteins, and visual or somatosensory evoked potentials. 
Patients with isolated optic neuritis, transverse myelitis or internuclear ophthalmoplegia may 
also eventually be diagnosed with MS. One can certainly hypothesize that an earlier diagnosis of 
MS would allow earlier therapeutic intervention (e.g. interferon beta-1a) to restrict 
demyelination or axonal damage that would otherwise occur if therapy was withheld until a 2nd 
attack of symptoms which would confirm a definitive diagnosis of MS. Since MRS shows 
spectroscopic abnormalities in white matter with conventional MRI appearance in patients with 
definitive MS  (50), it should therefore also have the potential to identify patients in the earliest 
stages of demyelination, who may not yet have any MRI abnormalities, or a definite MS 
diagnosis. In one study, it was shown that 27% of patients with isolated optic neuritis had 
abnormalities on brain MRS, 25% of whom subsequently developed clinically definite MS 
within 2 years (51).  

The other diagnostic question that may arise is the distinction between lesions of uncertain 
etiology; for instance, some particularly active, fulminant (tumefactive) MS plaques may be very 
difficult to distinguish from brain tumors using conventional MRI techniques. Conversely, 
lesions of other pathological types (e.g. tumors, stroke, infectious diseases) may mimic MS on 
brain MRI. Tumefactive MS plaques are a problem for MRS, since fulminant demyelination 
usually produces elevated choline and lactate, and decreased NAA, a pattern very similar to that 
seen in high grade brain tumors (52). One clue to distinguishing a brain tumor for a patient with 
tumefactive demyelination may be to evaluate the normal appearing white matter, which in a 
patient with MS maybe diffusely abnormal, unlike in a patient with a primary, untreated brain 
tumor, where normal appearing white matter is unlikely to be metabolically abnormal. MR 
perfusion imaging may also be helpful in distinguishing tumor from demyelination (53).   

Acute disseminated encephalomyelitis (ADEM) is a rare, inflammatory demyelinating  
disease which principally involves brain and spinal cord (54). It affects children and young 
adults, commonly after an infectious disease or immunization, and often has a similar MRI 



appearance to MS. One study has suggested that MRS may be helpful in distinguishing ADEM 
from MS, based on the observation that ADEM patients with a monophasic disease course and 
good clinical outcome have normal levels of Cho, unlike the elevation of Cho typically seen in 
acute MS plaques (41).  

Infectious Diseases 

The clinical value of MRS in infectious disease has been relatively less well characterized 
than studies of other CNS pathologies; however, there are some instances where MRS may be 
helpful in making a diagnosis (55). Since the metabolites observed in MRS reflect the cellular 
composition of brain, infectious processes of different types that lead to destruction of normal 
brain tissue tend to exhibit common spectral patterns, such as reduced NAA in neuronal loss, 
increased Cho and lipids in demyelination and/or gliosis, and reduced levels of all metabolites in 
necrotic tissue. However, there are some instances where MRS exhibits characteristic patterns, 
which may be useful for diagnosis.  

Intracranial bacterial infections may manifest intra-axially as either cerebritis eventually 
organizing into an abscess, or meningitis. While MRS has been little used in meningitis, brain 
abscesses have been well characterized by MRS (55). Normal brain metabolites (Cho, Cr and 
NAA) are much reduced, and a number of compounds are abnormally elevated, including the 
cytosolic amino acids valine, leucine and isoleucine (resonating around 0.9 ppm), acetate, 
lactate, alanine and lipids. In anaerobic bacterial abscesses, the TCA cycle metabolism leads to 
the elevation of a peak from succinate that can be detected at 2.4 ppm in the spectrum. Succinate 
elevation has also been observed in cystic lesions resulting from parasitic infections such as 
cysticercosis or hydatid disease (56,57). Therefore, MRS may provide some clues as to the type 
of the infective agent, and the metabolic profile of an abscess is quite different from that of a 
non-infective lesion. For instance, solid, high-grade neoplasia will nearly always have a high 
Cho signal, although those which are cystic or necrotic may not, in which case spectra from the 
rim of the lesion (rather than the center) should be reviewed for elevated Cho signal. It should 
also be noted that the differential diagnosis between an abscess and neoplasm may also be made 
with diffusion-weighted imaging, which typically (but not always) shows markedly restricted 
diffusion in the abscess (58).  

Viral infections may cause either primary viral encephalitis (i.e. where the virus directly 
affects the brain) or para- or post-infectious encephalitis where there is no direct evidence of 
viral penetration into the CNS (e.g. such as ADEM, discussed above). Two of the viral infections 
most commonly studied by MRS are herpes simplex encephalitis and human immunodeficiency 
virus (HIV) (59). Both types of encephalitis show reduced NAA and increased Cho and mI, 
presumably secondary to neuronal loss or dysfunction, and gliosis (60,61). In addition, MRS-
based metabolite measures have been shown to correlate with dementia rating scales in HIV, and 
therefore may be a useful way of quantifying brain involvement in HIV dementia, and as a 
means of evaluating treatment response (62). Finally, immunocompromised patients with HIV 
are susceptible to a variety of opportunistic organisms that may flourish in the CNS; the MRI 
appearance of some of these infectious lesions often overlaps with that of other disease 



processes, including neoplasia.  For example, the commonly encountered brain mass-like lesions 
in patients with HIV include toxoplasmosis, progressive multi-focal leukoencephalopathy (PML) 
and primary CNS lymphoma. These lesions may be difficult to distinguish based on 
conventional MRI, and it has been reported that MRS may be helpful in establishing the 
diagnosis (63). In particular, necrotic toxoplasmosis lesions usually show low levels of all 
metabolites and elevated lipid, while PML and lymphoma will typically have elevated Cho 
signals. Differentiation of PML from lymphoma may be more difficult, however, based on MRS 
alone, and other imaging techniques (such as enhancement pattern on post contrast images, or 
more advanced MR perfusion imaging, or [11C-Methyl]thymidine PET and Thallium-201 SPECT 
(64)) may be required in order to increase the diagnostic certainty.  
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