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Choline is an essential nutrient 

 
Choline (Cho), a quaternary amine, is an essential nutrient supplied by the diet (1, 2).  
Choline uptake and intracellular metabolism during the prenatal period were shown to 
have a critical role in brain development and cognitive processes (3, 4). Choline is a 
precursor in several key biochemical pathways as demonstrated below in scheme 1.   
 
Scheme 1: Metabolic Fate of Choline 
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Choline transport  

The life-time of choline in the blood and its distribution in the body, as well as its 
transport into the cells are critical steps in the metabolic fate of choline. The transport is 
the rate limiting step for the synthesis of acetylcholine (5) and of PCho (6). The 
transporters of choline belong to the group of organic cation transporters (7,8).  There are 
several transporter genes encoding for the following choline transporters:  
1. The plasma membrane choline transporter CHT1 that mediates choline uptake with 
high affinity; a Km of 1 to 3 µM. This transporter is a Cl- and Na+ dependent co-transporter 
(9). It is mainly expressed in cholinergic neurons, however, recent studies in our lab has 
shown that it is also expressed in human breast cancer cells.  
2. The family of choline transporter-like proteins - CTLs.  Knowledge about human 
CTLs is limited (8), however, findings in other species, particularly in the mouse, 
strongly suggest an important role in human physiology. mCTL1 expression was found 
inside and outside the nervous system. High levels of hCTL1 mRNA were found in 
colonic and lung epithelial cells (9).    
3. The three electrogenic organic cation transporters OCT1, OCT2, and OCT3 which 
operate independently from Na+, Cl- and H+ ions (10). In species tested so far OCT1 was 
found to be mainly expressed in liver, OCT2 in kidney and OCT3 expression was 
relatively broad, in skeletal muscle, liver, placenta, kidney and heart. Low expression of 
OCT1 was also found in the mammary gland.   
There are conflicting results in the literature regarding the affinities of these transporters 
to choline; the Michaelis–Menten constants for the choline transport through OCTs vary 
from ~20 μM to 600 μM (11-15). Both phosphorylation and rapid internalization and 
recycling of the transporters were suggested as potential regulating mechanisms (16). 
Choline can also cross the plasma membrane by a diffusion-like mechanism as was found 
for normal and cancerous epithelial mammary cells (17). 

Recently we characterized the rates of transport and mRNA expression levels of 
choline transporters in five different human breast cancer cell lines and in normal 
primary cultures of human mammary epithelial cells. The expression of the transporters 
followed the order CTL1>OCT2>OCT1>CHT1 in both the  normal and the cancer cells. 
We found that the transport rate was enhanced in all breast cancer cells as compared to 
that in the normal cells. This enhancement correlated with upregulation of the expression 
of the choline transporters CHT1 and OCT2 in the cancer cells as compared to the 
normal cells. In contrast to our results, Glunde et al reported that all choline transporter 
genes were expressed in equal measure in both spontaneous immortalized human 
mammary epithelial cells (MCF-12A), as well as MDA-MB-231 human breast cancer 
cells (18) This finding could arise from the induced expression of the transporters that 
occurred in the transformation of the normal MCF-12A cells to an immortalized line or 
from the limitation in the sensitivity of the method.  
 

Choline Metabolism 
Choline is the precursor of various metabolites. The intracellular routing of choline to its 
various metabolic pathways, phosphorylation, oxidation, and acetylation is cell and tissue 
specific.  



The phosphorylation by choline-kinase is the first step in the Kennedy pathway which is 
responsible for the biosynthesis of choline phospholipids such as phosphatidylcholine 
(PtdCho) (18-20). PtdCho is required for the build–up and maintenance of cell 
membranes. It also serves as a precursor of diacylglycerol (DAG), that has an important 
role in regulating cell growth, differentiation and death.   
The biosynthesis of PtdCho (see scheme 2) occurs on the cytosolic side of the 
endoplasmic reticulum membrane, through a cascade of three enzymatic steps consisting 
of: 1) choline phosphorylation by choline-kinase; 2) PCho conversion to CDP-choline by 
CTP:PCho cytidylyltransferase (CCT) ; and 3) PCho transferase (PT)-mediated PtdCho  
 
Scheme 2: Phosphatidylcholine Cycle 
Adapted from  Podo F, NMR Biomed, 12: 413, 1999 (19) 
 

 

 

 

Choline and choline metabolites can be re-generated by controlled breakdown of choline 
phospholipids through several pathways. The main pathways for PtdCho mediated 
hydrolysis occur via Phospholipases D (PLDs) that produce choline and phosphatidic 
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acid, and phospholipases A A (PLAs) that generate free fatty acids and glycerol 3-
phosphocholine (GPC). The subsequent hydrolysis of GPC into glycerol 3-phosphate and 
choline is catalyzed by a GPC phosphodiesterase.  
PtdCho is the predominant component of cellular membranes but other choline 
phospholipids such as sphingomyelin, choline plasmalogens (21) and 
lysophosphatidylcholine are also involved in maintaining the structural integrity and the 
signaling functions of cellular membranes.   
Choline is also oxidized in the mitochondria to betaine. The methyl groups of betaine are 
used to re-synthesize methionine from homocysteine, thereby providing methionine for 
protein synthesis and transmethylation reactions . 

 
Choline metabolism and malignant transformation 

 
Choline metabolism and choline-derived metabolites can undergo extensive alterations as 
a result of a malignant transformation.  The level of PCho in human breast cancer cells 
was found to be markedly higher than in normal human mammary epithelial cells (22-
24). Both choline transport and phosphorylation were found to be augmented in human 
breast cancer cells relative to their normal counterpart. The level of PCho correlated with 
the maximal rate of choline transport in the normal and cancerous cells, but it did not 
correlate with the tumorgenecity and invasiveness of the cancer cells (unpulblished 
results). Progression of human mammary epithelial cells from a normal to a malignant 
phenotype was shown to be associated with a reversion in the balance, as well as an 
overall increase in the content of PCho and GPCho (24). A similar trend was also 
exhibited by human prostatic epithelial cells (25).  High levels of phosphomonoesters, 
including PCho, were detected in human breast cancer biopsies and patients (26-28). Ras 
transformed cells, and multi oncogenic transformed cells have also exhibited an increase 
in PCho content (29-31). Choline-kinase activation was shown to be critical for the 
proliferation of primary human mammary epithelial cells and breast tumors progression 
(32). Indeed, cessation of PCho synthesis by novel choline kinase inhibitors exhibited 
antitumor activity (33-35). We have recently characterized mRNA expression levels of 
the two choline kinase isoforms, choline-kinase α and β. The expression level of the α 
form increased by several folds in all breast cancer cells relative to that in normal 
mammary cells whereas the β form remained about the same in both the cancer and 
normal cells.  
Choline is a precursor of choline derived phospholipids, but can be also recovered as a 
product of their hydrolysis. The synthesis and degradation of phospholipids may be 
induced by growth factors that play a major role in malignant transformations (36, 37).  
Several studies have demonstrated regulation of PtdCho metabolism by a receptor 
tyrosine kinase cascade, downstream of the ras/raf interaction (38, 39).  In turn, 
molecules derived by the breakdown of choline-containing-phospholipids, such as 
diacylglycerol, ceramide, and PCho can act as second messengers in mitogenic signal 
transduction pathways (40-43).   
 
 
MRS of Choline in living cells, cell extracts, tumor specimens and tumors in animal 
models. 

 



Choline and choline metabolites can be traced in cells and tissues, in vitro and in vivo, by 
means of multinuclear magnetic resonance spectroscopy (MRS). Proton spectra of 
choline and its freely tumbling metabolites exhibit a strong single signal of the three 
methyl groups at ~3.2 ppm and multiplets of the two coupled methylene groups. In high 
resolution proton spectra of cells and cell extracts, it is possible to separate between the 
signals of the various choline metabolites, however, in spectra recorded in vivo the 
signals usually overlap. 31P spectra exhibit separate signals of the phosphorylated choline 
metabolites such as PCho –  at ~  4.2 ppm (pH dependent) and  GPC at  0.48 ppm. 
It is also possible to label choline nuclei with 13C or deuterons (2H) and monitor the 
incorporation of the label to the various choline metabolites (17,18, 44-48). Labeling with 
13C of [1,2-13C]-choline, makes it possible to achieve a separation of 3-100 ppm  
between choline metabolites  whereas the proton signals of the different choline 
metabolites span a  small range of ~0.1 ppm and are difficult to resolve. 
Monitoring the labeled choline and its incorporation to other metabolites were 
particularly useful when the kinetics and turn-over rates of phospholipids metabolism 
were investigated.  
Recently progress has been made by applying high resolution magic angle spinning 
spectroscopy (HRMAS) to study ex vivo tissue specimens (49-57). The rapid spinning of 
the samples at 54.70 to the static magnetic field (the magic angle), around its own axis, 
reduces the broadening caused by restricted molecular motion and magnetic 
susceptibility. Consequently, the resulting spectra reveal the presence of numerous 
metabolites and  make it possible to quantify their relative content. However, as tissue 
preparation and conditions during the recording of the spectra may cause substantial 
degredation and modify the metabolites profile, the results may not reflect the in vivo 
situation.  This approach can, nevertheless, provide detailed biochemical information and 
lead to a better characterization of metabolic markers of cancer. For example Valonen et 
al (58) studied changes in the choline metabolites in rat glioma ex vivo during apoptosis 
induced by thymidine kinase-ganciclovir gene therapy. HRMAS was able to resolve the 
peaks of choline, glycerophosphocholine, phosphocholine, taurine and myo-inositol and 
show early increase in GPCho and PCho associated with induced apoptosis  and long 
term effect of cell death associated with a decline in taurine.  
 
Numerous multinuclear MRS studies of tumors in animal models revealed the presence 
of choline and choline metabolites (59-63). A large fraction of studies were devoted to 
monitor changes in the proton composite choline signal or 31P phosphomonoesters signal 
as a result of treatment in order to identify surrogate markers for response (64, 65). 

 
 

1H and 31P MRS studies of choline and choline metabolites in cancer patients 
 

MRS studies performed on different types of human cancers in vivo were first 
comprehensively reviewed by Negnedank (66). Leach et al (67) summarized the finding 
from nine different 31P MRS studies in vivo on human breast cancer. In line with the 
results obtained in cellular systems and in tumors in animal models a large fraction of 
breast cancers exhibited a strong phosphomonoester signal, composed of both PCho and 
phosphoethanolamine. Breast 1H MRS studies performed in vivo have also demonstrated 
the presence of a high proton signal of the N-methyl groups of choline, PCho and GPC 



(composite choline signal).  Katz-Brull et al (68) and Bolan et al (69) recently reviewed 
the clinical utility of 1H MRS in differentiating malignant from benign breast lesions. 
High sensitivity and specificity were indicated in the early studies (70, 71) as well as in 
the most recent study performed at 4T (72). The choline signal in cancers was distinct, 
although a peak overlapping with choline was also detected in normal breast-feeding 
volunteers (73). Moreover, other, non choline metabolites such as  taurine and 
myoinositol were found to overlap with the choline signal and cause misinterpretation of 
the peak at 3.2 ppm (73). Interestingly, in a subgroup of young women the sensitivity and 
specificity based on the presence of a composite choline signal approached 100% (68). 

In the aforementioned 1H MRS studies of the breast the differentiation was based on the 
presence or absence of the composite choline signal at 3.2 ppm. Quantitative approaches 
were recently applied, measuring the area of the choline peak in reference to an external 
standard or to the water signal (74, 76). The latter quantification also enabled monitoring 
changes in this peak in response to chemotherapy (76).  Similar changes in the 31P 
phosphomonoester peak also served to predict response to chemotherapy (67); response 
to breast cancer therapy was associated with a decrease in the 31P signal of the 
phosphomonoesters, whereas non-responding patients demonstrated an increase in this 
peak. 

The composite choline signal also served as a marker of malignancy in cancers other than 
those found in the breast, particularly to diagnose lesions in the prostate and brain (77). 
However, the delineation of malignancy was based on referencing the choline signal to 
other metabolites such as choline to citrate in the prostate or choline to NAA or to total 
creatine in the brain. The differences could, therefore, partially stem from changes in the 
peak used as a reference. Studies of cell lines and tumors in animal models indicated that 
malignant transformation, in general, is associated with increased choline metabolites’ 
levels; however, comprehensive basic biochemical and molecular studies, as well as 
clinical evaluations are necessary for each malignancy.  

Localized MRS is a challenging protocol and requires optimization of the scanner in 
terms of field and RF homogeneity. For localization of the lesions spectra were recorded 
from a specific region using different techniques such as DRESS and ISIS. To acquire 
long and short TE spectra within the sampling volume, PRESS and STEAM were 
applied. Detection of the relatively small choline signal in the background of the strong 
water and methylene lipid signals required the application of water suppression 
sequences and attenuation of the lipid signals. Recently MRSI sequences were 
successfully applied in the prostate and the breast (78, 79). In the future, with the 
development of high field scanners, new advanced coils and pulse sequences for 
improved frequency resolution; it might be possible to monitor the process of malignant 
transformation at a preventive stage by quantifying the various choline metabolites. 
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