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Cancer cells have a remarkable ability to escape programmed cell death (PCD). This
characteristic is often associated with aggressive growth pattern and resistance to
traditional anticancer drugs *. PCD, better known as apoptosis, is an active ATP-requiring
cell death process involving sophisticated cellular machinery to commit suicide and to
avoid recruitment of detrimental inflammatory processes, leading to clearance of dying
cells by phagocytosing macrophages. PCD is triggered through two distinct pathways.
Firstly, by the receptor-dependent, or extrinsic, pathway involving transmembrane
signalling and recruitment of adaptor proteins and secondly, by mitochondrial-dependent,
or intrinsic, apoptosis pathway involving translocation of BCL2 family members to
mitochondrion and release of cytochrome c to the cytoplasm. The common domain of both
pathways share is activation of intracellular caspases triggering the overall apoptosis
process.

There is considerable interest to assign endogenous ‘biomarkers’ or ‘surrogate markers’ for
imaging of apoptosis in cancer in vivo 2 The effort gains great clinical motivations from the
fact that a number of anti-cancer drugs as well as radiation therapy cause apoptosis * and an
early tumour response to these therapies predicts long-term treatment outcome *. Imaging
biomarkers for apoptosis would allow to identify the patients unresponsive to a given drug
soon after introduction of the therapy, because they may benefit with the use of alternative
chemotherapy protocols, for instance in breast cancer °. Similarly, unnecessary and
sometimes laborious chemotherapy sessions could be avoided ¢. Furthermore, scrutinised
information of molecular events of PCD may offer guidelines for anticancer drug
development 7. In this account potentials of NMR techniques to detect endogenous
biomarkers or surrogate endpoint markers of apoptosis in cancer cells and tumours before
tumour eradication, will be discussed. Targeted probes for early apoptotic events, such as
those to externalised phosphatidylserine for revelation with radioactive é optical * MR-
visible tags *°, are under active development, however, these methods will not be covered
here.

NMR spectroscopy of apoptotic cancer cells and tumours

Due to the fact that several biochemical pathways are either directly or indirectly affected
by early steps of apoptotic process, levels of several biochemical compounds change and
thus they could be potential biomarkers for detection by NMR. Recent studies show that
there are a number of biochemical and biophysical changes associated with early apoptotic
processes that are detectable by NMR techniques serving as potential indices for PCD
(Table 1).



Glucose metabolism

Malignant tumours are commonly highly glycolytic and elevated lactate concentration in
tumours in vivo, as detected by *H NMR spectroscopy, has been linked to poor prognosis .
Positron emission tomography (PET) studies observing ‘®F-deoxy-D-glucose (FDG)
metabolism in cancer tissue in vivo have shown that both FDG uptake and phosphorylation
rates decline in breast tumours responding to chemotherapy much earlier than tumour
volume shrinkage *. Smith and co-workers observed that dose-to-uptake-ratio of FDG
decreased much more in the breast tumours after a single pulse of chemotherapy
developing partial or complete response than in non-responders *. Large body of
chemotherapy —induced cell death is apoptotic, therefore these data indicate that glucose
metabolism decreases in response to early apoptotic events well before imminent cell death.

Cell studies have revealed that apoptosis is associated with accumulation of a glycolytic
intermediate, fluctose-1,6-bisphosphate (FBP) 4, consistent with inhibition of glycolysis.
FBP accumulation is likely to be due to inhibition of glyceraldehyde-3-phosphate
dehydrogenase because of depletion of NAD.

13C NMR spectroscopy has been used in preclinical settings to study RIF-1 tumour glucose
metabolism during cyclophosphamide (CP) treatment *. It was reported that the glycolytic
rate decreases by 24 hours after a single dose of CP before decline in tumour growth rate is
evident. CP response was associated with increased oxidation of glucose and decreased
tissue pO, tension reflecting activation of mitochondrial oxidative metabolism in treated
tumours. These data are very interesting in regard to biochemical mechanism underlying
the FDG PET observations above, indicating that a shift towards oxidative metabolism
could be an index of positive drug response and thus, apoptosis.

Choline —containing compounds

Choline —group containing metabolites are of special significance for the in vivo NMR
spectroscopy of cancer 7. *P NMR spectroscopy allows for separation of several choline
subspecies in vivo. Cell studies have shown accumulation of CPD-choline to apoptotic cells
1418 The accumulation has been attributed to inhibition of phosphatidylcholine biosynthesis
resulting from inhibition of cholinephospotransferase *. This enzyme has an alkaline pH
optimum and because apoptosis is associated with cell acidification **, it becomes inhibited
in apoptotic cells. Using proton-decoupled *'P NMR spectroscopy, it has been reported that
the pretherapy sums of phospoethanolamine (PE) and phospocholine (PC) in non-Hodgkin
lymphomas ¢ and head and neck tumours *® were lower in the tumours responding to
chemotherapy and radiation, respectively, than in non-responders. It has been speculated
that the predictive potential of PE+PC may be related to their involvement in apoptotic
signalling °.

The value of *H NMR peak centred at 3.2 ppm, with large contributions from choline —
containing metabolites (CCM), as a “biomarker’ of apoptosis is under research. CCMs are
high in cancerous tissue * and for instance, breast lesions with CCM > 4 mM almost
exclusively are malignant tumours #. Tumour cellularity and CCM concentration are



strongly correlated . A recent study on breast tumour cases, using in vivo spectroscopy at
4 T, observed that 'H NMR —detected CCMSs decrease 24 hours after chemotherapy in
responding tumours, but not in non-responders #. This is a very intriguing observation
suggesting that CCM may be a sensitive *H NMR indicator for very early events in tumour
eradication in mammary tumours, possibly through apoptosis.

'H chemical shift dispersion of individual choline-subspecies is so small that they can not
be separated in vivo within the peak centred at 3.2 ppm. In addition, several other
molecules, such as taurine, myo-inositol, phosphatidylcholine and macromolecules, overlap
the peak in a high field *"H NMR spectrum acquired with short TE #. In gene therapy -
induced apoptosis of rodent glioma, the *H NMR peak at 3.2 ppm # appears to behave very
differently to that seen in chemotherapy-treated breast cancer #. The CCM peak, as
detected at 4.7 T in vivo, decreases only in advanced cell kill when tumour cell density has
decreased by ~70% #. Recently, using high-resolution magic angle spinning *H NMR of
glioma ex vivo, Valonen and co-workers reported that PC and GPC concentrations increase
in the early phase of apoptosis when tumours show DNA breakdown products #*. In this
tumour Cho+PC+GPC stays unchanged despite >70% decrease in cell density due to PCD,
but Tau decreases by ~50%. These data indicate that the *H NMR peak at 3.2 ppm in vivo
may be indicative of cellular processes involved in apoptosis, however, the underlying
biochemical changes may greatly vary. Thus, it appears that CCM can not be regarded as
universal biomarkers of early phase of apoptosis, but rather surrogate endpoint marker of
(apoptotic) cell kill in cancer.

Intracellular pH

It is a common observation from cell studies that apoptosis is associated with intracellular
acidification %, in fact, it has been shown that intracellular acidosis can result in apoptosis
in HL-60 cells #. Tumours have close to neutral or alkaline intracellular pH, yet the
extracellular space appears to have lower pH by up to 0.5 pH units #. NMR -based
methods have been introduced to determine extracellular pH in tumours #* and it would be
tempting to combine these with either **P NMR or recently described MRI techniques to
image intracellular pH * in apoptotic tumours as well.

'H NMR detectable lipids

Cell studies have shown that induction of apoptosis by pharmacological or other means
results in subtle increase in *H NMR detectable lipid signals . *H NMR detectable lipids
do not appear in Jurkat cells during necrotic cell death, but in human HBL-100 breast
cancer cells also necrosis leads to accumulation of lipids *. Because NMR detects lipids
only in specific cellular compartments, i.e. lipid vesicles **, NMR would allow to monitor
lipid body formation in apoptosing tumours. In rat glioma apoptosis has been shown to be
associated with accumulation of *H NMR lipids, most notable polyunsaturated fatty acids
(PUFA) concomitantly with generation of intracellular lipid bodies " *. Recently, *H NMR
lipids have been shown to increase in experimental lymphomas * and neurobastomas
during drug-induced apoptosis “. It appears that increase in *H NMR detected PUFAS is an
early sign of apoptotic process preceding tumour growth arrest *. Pattern recognition



methods have shown that vinyl-, bis-allylic- and methyl-resonances provide the greatest
contributions to discriminate apoptotic tumours from non-apoptotic ones by ‘H NMR
spectroscopy before expression of cell death. Accumulating PUFAs have chemical
structure found in lipids present in mitochondrial membranes * suggesting that *H NMR
detected lipids originate from membrane breakdown products.

Other metabolites in apoptosis

It is not unexpected that many other *"H NMR detectable metabolite changes occur in
apoptotic cells . Glycine, creatine and alanine show a correlation with cell density, thus
serving as potential surrogate endpoint markers for the severity of cell death.

MRI and apoptosis in tumours

Several MRI techniques may provide information useful for detection of PCD in tumours
in vivo (Table 1). Much better spatial resolution by MRI over MRS makes it certainly very
attractive to be exploited for imaging of consequences of apoptosis and monitoring of
cancer treatment response 2.

Diffusion MRI

A remarkable observation that diffusion-weighted MR signal increases in the early phase of
anti-cancer drug treatment “ facilitated use of DWI for monitoring of treatment in
experimental tumour models through apoptosis . DWI has recently been successfully used
in assessment of brain tumour treatment in humans “.

In rat tumour models, correlating histological changes of apoptosis and cell death with MRI
“4 have shown that apparent diffusion coefficient (ADC) increases briefly before or close
to the time when tumour growth ceases. A massive increase in ADC takes place during
subsequent days along the tumour eradication. Histological analyses of apoptosis markers
and cell count in association with quantitative MRI have shown that the initial ADC
increase coincides appearance of TUNEL positivity and decline in cell density “. These
events are associated with increase in spin density as a result of net water accumulation to
apoptotic tumour. Interestingly, in the gliomas undergoing gene therapy-induced apoptosis,
both ADC and T,, as quantified with Hahn single echo MRI, increase in concert “ “. It
appears that loss of intracellular volume, increase in extracellular volume and net water
gain are the key cellular factors leading to revelation of apoptotic cell death with DW and
T, MRI with comparable sensitivity. In some other tumours, where absolute DWI, but only
T,-weighted MRI has been exploited, diffusion has shown greater sensitivity to cell death
than conventional T, MRI “. DWI is considered a surrogate endpoint marker for
monitoring of tumour apoptosis and cell death both in experimental and clinical settings.

Ty, T1, and T, MRI

T1 MRI is commonly used for *anatomical’ imaging of tumours. It appears that absolute T,
increases in apoptosing gliomas parallel to tumour volume shrinkage, suggesting that T



has a low sensitivity to early events of tumour cell death “. Exciting data have been
reported from Ty, MRI used for imaging of apoptosis in a glioma model ““. Ty, contrast
appears in parallel to DNA degradation, as quantified with TUNEL-staining, well before
decline in cell density or arrest of tumour growth. The contrast in apoptotic tumours may
be owing to the inherent sensitivity of Ty, to (chemical) exchange processes **.

Several studies using Hahn single echo T, MRI have shown that apoptosis can be revealed
with this contrast well before tumour volume shrinkage “ “2 Carr-Purcell type of multi-
echo method, incorporating adiabatic pulses ®, has been introduced for exploitation of
dynamic dephasing processes for MRI contrast. Using this method Grohn et al. recently
showed that in gene therapy —induced apoptosis of rat glioma, dynamic dephasing signal
increases much before conventional T, signal offering improved sensitivity for detection of
PCD “. The study by Groéhn et al demonstrates that T, contrast can be tailored for improved
sensitivity to pathology for potential clinical exploitation.

Conclusions

Several endogenous biomarkers and surrogate markers for apoptotic process are amenable
for detection by multimodal NMR methods in vivo. Some of these, such as absolute T, and
diffusion MRI, bear great clinical potentials. In future molecular imaging, exploiting either
‘smart contrast agents’ (8-10) or hyperpolarised **C substrates *, is expected to become
feasible for monitoring of apoptosis in vivo.

Table 1. Putative biomarkers and surrogate endpoint markers of apoptosis for detection by
NMR methods

Substance/Variable Biomarker Surrogate marker | Reference
Fructose-1,6-bisphosphate | Increase 14
CDP-choline Increase 18
Intracellular pH acidification 18,19
'H detected lipids Increase 32,34,38
PUFA Increase 37,38
Glucose uptake/glycolysis | Decrease 12,13,16
T1, MRI contrast Increase (?) Increase 48, 49
Creatine/taurine/glycine Decrease 25,26
Cholines Decrease 23
ADC Increase 41,43,44
T, or CP-T, MRI contrast Increase 45,49
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