
 
Diffusion Tensor Imaging to Study Brain Connectivity 

 
Susumu Mori 

 
Department of Radiology 

Johns Hopkins University School of Medicine 
 
 

Introduction 
MRI has been a powerful tool to map anatomy and function of human brains. To 

assign functions of the cortex, fMRI has been playing important roles. Classically, 
anatomy – function correlation studies had relied on postmortem examination of patients 
with localized lesions. Now we have a tool to non-invasively investigate functional 
centers of the brain.  

Compared to the cortical mapping, white matter mapping has been a challenging 
target. The white matter plays an important role to connect different regions of the brain. 
To understand brain functions, it is essential to understand brain connectivity. 
Interestingly, our understanding about brain connectivity is quite limited. One of the 
reasons could be its sheer complexity. In addition, we haven’t had good tools to 
investigate brain connectivity either. All existing methods are based on invasive 
techniques, which can’t be applied to human.  

 In addition to our scarce knowledge about the brain connectivity, conventional 
MRI has also been powerless in this front. In T1 and T2-weighted images, most white 
matter regions look homogeneous. This situation has changed since the introduction of 
diffusion imaging and diffusion tensor imaging (DTI) in ‘90s. (1-3) This technology can 
provide us with approximate orientations of axonal tracts within each pixel. (3-8) It has 
been also shown that trajectories of prominent white tracts can be three-dimensionally 
reconstructed based on DTI results. (9-16) There is a possibility that we can obtain much 
needed information about human brain connectivity. By combining with fMRI data, we 
can ask questions like, “how two fMRI-activated regions are connected?” Although this 
is a quite exciting technique, it is also becoming increasingly clear that great care is 
needed to interpret DTI and DTI-based tractography results. (17, 18) In this course, I 
would like to go over limitations of DTI technique and various techniques to study brain 
connectivity. 

 
Limitations of DTI 
 First of all, it is important to define what we mean by “connectivity”. We are 
tempted to think that tractography results reveal cell-level neural connectivity, but what it 
gives us is not axonal connectivity, but the macroscopic anatomy of the white matter. In 
Fig. 1A, 1x3 mm boxes are placed on a postmortem specimen. This size of probe could 
delineate overall configuration of the white matter anatomy seen in Fig.  1A. In Fig.  1B, 
a result of single-neuron reconstruction in a rat hippocampus is shown. There are two 
important facts in this figure. First, with the current level of image resolution, it is 
impossible to reveal the single-cell level connectivity. Second, even if we could 
reconstruct the entire neuron, “connectivity” is not as simple as connecting two points. 



Neurons have a dendrite network to communicate with nearby neurons. They have axons 
to communicate distant neurons, which could have many branches. If biological 
questions require information about the cell-to-cell level connectivity, DTI and 
tractography may not be the right tool. The real power of DTI is that it can delineate the 
entire white matter architecture within 10 min of scanning time, which is unthinkable to 
achieve by using invasive chemical tracer technologies. There must be many important 
biological and clinical questions that can be answered by DTI but not by the microscopic 
methods. We need to use right tools for right questions. 
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Fig. 1: Comparison of a postmortem human sample that reveals the macroscopic white matter 
architecture (A) and single-cell reconstruction of a neuron in a rat brain using an invasive in vivo 
chemical tracer experiment (B). In (A), the approximate size of 1 x 3 mm pixel is shown by green 
boxes. 

 
 In addition of the resolution problem, it is also known that tractography is 
sensitive to noise, partial volume effect, locations of seeding pixels, and crossing fibers. 
It is reasonable to assume that the result contains false positive and negative data. Despite 
of these limitations of DTI/tractography, it is also true that DTI can provide us new 
anatomical information about axonal architectures. Our task is to extract reliable and 
useful connectivity information from the DTI datasets. One important step toward this 
goal is to develop tools to quantitatively analyze the DTI-based connectivity data and 
statistically analyze the results. This approach at least gives us a platform to compare 
different groups and detect reproducible differences, which could give us important clues 
about brain connectivity and its pathology. 
 
Techniques to study connectivity 
Pixel-based approach: Without resorting to tractography, we have a fair amount of 
knowledge about white matter connectivity. For example, we can clearly identify the 
pyramidal tract in the pons, which is known to contain a high concentration of the 
corticospinal tract. Assuming that the size of tract is correlated with strength of functional 
connectivity, we can investigate status of specific connectivity by measuring a tract size 
at pre-determined regions. Pixel-by-pixel information about the fiber orientation is 
crucial to delineate the tract size. There are several types of quantification approaches. 
Advantages and disadvantages of each approach will be discussed. 
Tractography-based approach: Tractogaphy can be used to identify a specific pathway 
that connects regions of interest. Tractography is an inevitable choice if one wants to 
study connections which haven’t been described before and, thus, we don’t have a priori 



knowledge about the trajectory. We need to assess reproducibility of its trajectory among 
subjects. Reproducible placement of ROI locations (intra and inter-subjects) is also an 
important issue. Identification of the same ROI locations across subjects could be 
performed by using fMRI or anatomical landmarks. Once fibers are reconstructed, we 
need to quantify their coordinates. In this presentation three types of quantification 
approaches will be discussed. These are; 

1) Trajectory probabilistic map: Once fibers are reconstructed in each subjects, they 
can be normalized into a template. As shown in Fig. 2, this creates a probabilistic 
map of the tract. If a high reproducibility is found, it suggests that the authenticity 
of the tract. By comparing the results between different populations, the status of 
the tract can be investigated. 

 
 
 

ig. 2: An example of a probabilistic map of tracking results. In this example, the corticospinal tract 

2) Connectivity map: It is also possible to extrapolate the tracking results to identify 

  
 

ig. 3: An example of cortical 
rticospinal 

Template Averaged map

 F
is reconstructed in each subject and the coordinates are transformed to a template. By adding all 
transformed results, an averaged map can be created. 

 

cortical regions that are associated with a specific white matter tract. Again, the 
key is to statistically analyze the results from multiple subjects. Fig. 3 shows an 
example in which the results in Fig. 2 are registered in the Talairach coordinates.

F
connectivity map. Results of co
tract reconstruction are extrapolated to 
identify associated cortical regions in each 
subjects and the results are registered in 
the Talairach coordinates. 



3) Parcellation map: By using tractography in a systematic way, we can parcellate 
various brain structures such as the cortex, the thalamus, and the white matter. 
This idea is explained in Fig. 4. This is a new parcellation method that is based on 
brain connectivity.  

 
 

ig. 4: An example of quantification of connectivity information. From tractography (A), the corpus 
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callosum is divided into regions connected to the orbital (blue), frontal (green), parietal (orange), 
occipital (yellow), temporal (cyan), and basal ganglion / thalamus (red). Images in (B) show results 
from 8 subjects. The results are registered to a common template, from which probabilistic maps of
connectivity to each cortical lobes can be calculated (C).  

 
C
 In this
a ussed. Because it is often difficult to validate the DTI-based connectivity 
information, it is essential to quantify the results and test the reproducibility of the
across subjects. Most importantly, we need to define what type of brain connectivity we 
are interested in and assess if DTI is the most appropriate modality to characterize the 
connectivity. 
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