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Functional connectivity imaging with BOLD fMRI  
 
Functional connectivity refers to correlations between spatially remote neurophysiological events 
as described by Friston & Büchel. Functional connectivity is simply a statement about the observed 
correlations and does not imply how the correlation is mediated. Effective connectivity is closer to 
inter-neuronal connectivity as it refers to influence that one neuronal system exerts over another 
(Friston & Büchel). The difference between functional and effective connectivity is related to 
differences in the time and scale of the measurements; e.g. hemodynamics response function vs. 
spike trains. The following text focuses on the relationship between functional connectivity and low 
frequency fluctuations detected in resting state brain activity with BOLD fMRI.  
 
Already the first blood oxygen level dependent (BOLD) magnetic resonance imaging at 4 T 
demonstrated a 2 % fluctuation in the image signal intensity at resting state between activations 
(Ogawa, et al. 1992). Weisskoff showed that actually the resting state BOLD signal frequency 
spectrum had 1/f characteristics in addition to cardiac and respiratory related signals (Weisskoff, et 
al. 1992). Biswal was the first to show that in the absence of external stimuli the low frequency 
BOLD signal oscillations are synchronous in bilateral primary motor cortices (Biswal, et al., 1995). 
The detected correlation in the BOLD signals was regarded as functional connectivity.  
 
Other research groups detected the BOLD oscillations later on (Mitra, et al. 1998, Xiong, et al. 
1999). The spontaneous low frequency oscillations were later found in areas other than motor 
cortex as well. Some have even suggested that the fluctuation can map the functional cortices more 
extensively and concisely than single paradigm activation studies (Xiong, et al 1999). The 
oscillations contain information about the integrity of the inter-hemispheric connectivity of 
functional areas (Li, et al 2002, Lowe, et al 2002).  
 
Origin of low frequency BOLD fluctuation 
 
Some have regarded the low frequency fluctuations as technical or physiological artifacts, and 
indeed, some of the low frequency power of BOLD signal can be regarded as such. Gradient drifts; 
cardiac/respiratory aliasing, SSFP-fluctuations and such do unavoidably produce signal variance in 
BOLD images (Zhao, et al, 2000). However, the main source of low-frequency BOLD signal 
variance in the absence of stimuli and subject motion originates from regional physiological 
fluctuations (Biswal, et al, 1995, Kiviniemi, et al., 2005, Beckmann, et al, 2005). In addition, 
several other modalities have detected the same low frequency phenomena without aliasing or other 
problems related to MR environment. In the following findings of low frequency, oscillations with 
three major modalities of brain function analysis are being presented. Table 1 will sum up recent 
observations of low frequency oscillations in the human brain. 
 
EEG   
Without high-pass filtering the baseline, EEG (i.e. the DC-level) has infraslow (ISO, 0.02 – 1 Hz) 
oscillations (Vanhatalo, et al. 2004). The power alpha, beta, delta, EEG rhythms actually follows 
the baseline infraslow EEG oscillations – the ISO produces a widespread synchronization of 
neuronal excitability (Vanhatalo, et al. 2004). In addition, the fluctuation of the EEG coherence is 
weighted towards slow frequencies of 0.02 Hz and below. The coherence fluctuations are local (10 



mm) and more clearly present in intracranial than scalp EEG measurements (Bullock, et al. 1995). 
The coherence of EEG frequency bands (5-8, 13-20 and 20-35 Hz) fluctuates together, i.e. the 
bands are co-dependent of each other, as shown by Vanhatalo (2004) and Bullock and co-workers 
(1995). 
 Golanov, et al. (1996) detected oscillation of blood flow that was preceded by cortical electric 
bursts in deep isoflurane anesthesia. On the other hand, there are several studies showing no 
connection of localized cortical electric activity and vascular or metabolic fluctuations (Halsey & 
McFarland 1974, Vern, et al. 1988). The differences in findings may be related to use of 
anesthetics.  
 Slow EEG alpha power oscillations and BOLD signal fluctuations were found to correlate in 
distinct brain regions, some negatively and some positively (Goldman, et al. 2002). In 2003, several 
papers emerged detecting EEG power oscillations with regards to beta and alpha power oscillations 
and BOLD signal (Laufs, et al. 2003 a, b). The alpha power fluctuations correlate with inattention, 
whereas beta power oscillations are in concordance with conscious rest and default mode (Laufs, et 
al. 2003 b, Greicious, et al.  2004). EEG alpha power reduction is related to metabolic deactivation 
(Moosmann, et al. 2003).  
 
Metabolic and blood gas oscillations  
Astrocytes and neurons present slow oscillations in vitro and during each contraction cycle 
astrocytes secrete substances that are taken up by the neurons (Geiger 1963, Vern, et al. 1988). 
These volume oscillations are thought to reflect metabolic activity of the cell. A precise non-
invasive NIRS-study noticed that both blood oxygenation and tissue cytochrome oxidation oscillate 
dominantly at low frequency (LF ~ 0.1 Hz) and at (VLF ~ 0.04 Hz) (Obrig, et al. 2000). The VLF 
oscillation detected in cytochrome oxidase levels follows the blood oxygenation oscillations with a 
lag of 4 seconds. The oscillations in deoxyhemoglobin and cytochrome oxidase are 10 times smaller 
in amplitude than the oxygenation level oscillations. The VLF rather than the LF oscillations may 
be the origin of functional connectivity measurements. 
 Another significant study showed that the CO2-level of the brain precedes VLF BOLD oscillations. 
Both the blood oxygenation and flow follow the 2-mmHg amplitude pCO2 -level oscillations with a 
lag of 6.3 seconds (Wise, et al. 2004). In addition, there is a connection between metabolic 
oscillations and both the EEG and BOLD signal oscillations (Moosmann, et al.  2003). 
 
Vasomotor waves 
Vasomotion controls both regional blood flow and systemic blood pressure most efficiently at low 
frequencies (< 0.1 Hz) (Zhang, et al.  2000). Carl Ludwig noticed in 1847 that blood pressure in 
dogs and horses presents slow waves at a rate of 1-5 / min. The waves were first detected in the 
human brain circulation during the 1950’s (Hudetz, et al. 1998). The vasomotor waves are induced 
by myogenic activity (Hudetz, et al. 1998). Arterial walls present pressure dependent, multifocal 
contractions pointing to the autonomous origin of the oscillations.  
The mechanism of controlling blood flow and pressure seem to be a result of integration of several 
control mechanisms and thus the control mechanism of vasomotor waves seem to be multimodal 
(Sokoloff, 1996). Sympathic and parasympathic or vascular nervous systems are likely candidates 
for the neurogenic oscillator (Zhang, et al. 2000). Metabolic and thermoregulatory aspects are slow 
to react and thus may induce fluctuations in only very low frequencies (Panerai, et al 1998, Zhang, 
et al. 2000). 
 Blood oxygenation analyses tend to present a range of prominent frequencies rather than one 
specific frequency, c.f. Table 1. This is due to the presence of multiple oscillators affecting BOLD 
signal. There is evidence of at least two differently reacting spectral frequency ranges in blood 
pressured dynamics with a break point at about 0.02-0.025 Hz suggesting at least two control 
mechanisms (Wagner & Person 1994). The two control mechanisms seem to oscillate at separate 



frequencies, faster neuromyogenic at 0.25–0.5 Hz and slower autonomic/metabolic at 0.02 – 0.2 Hz 
(Wagner & Person 1994, Panerai, et al. 1998, Zhang, et al. 2000). 
Dora & Kovach (1981) have shown three different oscillatory rhythms in metabolism under alpha-
chloralose. The phase relationship and frequency between the metabolic, blood flow and 
electrophysiological oscillations varies between these oscillations, suggesting a different origin and 
control mechanisms behind the oscillations.  
 
Table 1. Studies of blood flow oscillation in humans. First author, year of publication, detection (technique), the 
measured signal (parameter) and fluctuation frequency (Hz) are mentioned. 

Author Year Technique Parameter Frequency  

Cooper 1966 Polarography pO2 0.1 
Livera 1992 NIRS tot-Hb 0.1 
Chance 1993 NIRS Light absorption 0.1-5 
Elwell 1996 NIRS 0xyHb,deoxyHb, tot-Hb 0.2 
Elwell 1999 NIRS 0xyHb,deoxyHb, tot-Hb 0.08/0.22 
Hoshi 1997/8 NIRS 0xyHb,deoxyHb, tot-Hb 0.01/0.008 
Diehl 1991/5 TCD MCA-FV 0.007/0.15 
Giller  1999 TCD MCA-FI 0.006-0.037 
Hu  1999 TCD MCA-FV 0.016-0.44 
Kuo 1998 TCD MCA-FV 0.016-0.44 
Zhang 1998 TCD MCA-FV < 0.07-0.2 
Bäzner 1995 TCD MCA-FV 0.01-0.5 
Blader 1997 TCD MCA-FV 0.03-0.2 
Mitra 1997 FMRI BOLD 0.1 
Biswal 1995 FMRI BOLD < 0.08 
Biswal 1997 FMRI BOLD 0.02-0.14 
Lowe 1998 FMRI BOLD < 0.08 
Kiviniemi 2000 FMRI BOLD 0.03-0.1 
Li 2002 FMRI BOLD 0.04 - 0.23 
Moosmann 2003 fMRI+NIRS+EEG BOLD+deoxyHb+α 0.2-0.3¤ 
Laufs 2003 fMRI+EEG BOLD+α+β 0.022 
Wise 2004 TCD+fMRI+capnograph    MCA-FV+BOLD+pCO2 <0.05 
NIRS = near-infrared spectroscopy, TCD = transcranial Doppler ultrasound. pO2 = partial oxygen tension,  Oxy = oxygenated, 
deoxy = deoxygenated, tot = total hemoglobin (Hb). MCA = middle cerebral artery, FV = flow velocity and FI = flow index, α = 
alpha and β= beta EEG rhythms, pCO2 = partial carbon dioxide tension. ¤) The frequency calculated from an image. 
 
BOLD signal – a mixture of multiple oscillators 
 
 Resting state connectivity measurements of the brain that utilize BOLD signal are de facto 
reflecting blood oxygenation similarity across the brain, not directly neuronal coherence. DeLuca 
and co-workers (2005) showed that perfusion data could map the same brain networks as BOLD 
signal data. Hypercapnia and sevoflurane anesthesia both abolish interregional functional 
connectivity whereas intravenous (i.v.) anesthetics enhance it (Biswal et al. 1997, Peltier et al., 
2005, Kiviniemi, et al., 2005). Hypercapnia and sevoflurane increase blood pressure and flow, and, 
reduce < 0.1 Hz vasomotor waves (Hudetz et al., 1992). I.v. anesthetics on the other hand reduce 
blood pressure and increase <0.1 Hz vasomotor waves. Since BOLD signal connectivity arises from 
< 0.1 Hz fluctuations the induced alterations in the power of low frequency fluctuations also alters 
connectivity measurements (Cordes et al., 2001).  
  
The reason why the BOLD signal fluctuation in low frequency is specific to areas known to have 
functional connections across the brain is not yet clear. Biswal showed that the BOLD signal 
originating from within the primary motor areas has clearly more correlation than non-functionally 



connected regions. His original idea was that oscillations could be carrying messages between 
functional areas:”..like amplitude and frequency modulated radio waves”. If the vasomotor 
fluctuations were the only origin of low frequency BOLD variability then these signal sources 
should be presenting more global areas, probably more close related to vascular territories. 
However this is not the case (Kiviniemi, et al, 2003, Beckmann, et al., 2005, DeLuca, et al, 2005).  
 
EEG power and pCO2 – level related BOLD oscillations seem to be located in unique functional 
areas with correlation to functional resting state networks (Wise et al., 2004, Laufs 2003, Golmann 
2002, Moosmann et al., 2004). The obvious question is why are the signal sources of resting brain 
activity clearly following functional neuroanatomy and not vascular territories (Kiviniemi et al., 
2003, Greicius et al., 2004, Beckman 2005, DeLuca, et al.  2005, Fransson 2005).  
 
 The authors opinion is that the temporal behaviour of the BOLD signal is a sum of effects induced 
by neuronal activity, autonomous blood flow control inside the central nervous system, metabolism, 
vasomotor waves, etc. In functionally connected signal sources detected with BOLD the vasomotor 
waves function as a temporal contrast within the grey matter. Hypercapnia and sevoflurane abolish 
this temporal contrast and i.v. anesthesia enhances it. 
 
Neuronal activity as a strong modulator of blood oxygenation set it’s fingerprints on the BOLD 
signal in addition to the vasomotor waves. The resulting temporal oxygenation pattern detected as 
BOLD signal is a regionally specific interference pattern. When interregional neuronal activity is 
affecting this interference pattern, it enables the detection of interregional correlation of brain 
networks. Hypercapnia and sevoflurane abolishes the fingerprints of neuronal activity from the 
BOLD signal with increasing the flow by a ceiling-effect. 
 
Methods of analyzing functional connectivity 
 
The non-deterministic resting state BOLD signal is complex and unpredictable due to interpherence 
of multiple oscillators. Thus the analysis methods should be more data than hypothesis driven. 
Statistical analysis yields most accurate results in complex or chaotic data (Kiviniemi, et al. 2003). 
Data-driven methods like independent component analysis (PCA or ICA, respectively) have proven 
to be important tools in analysizing resting state activity. FSL based MELODICA (Beckmann, et al. 
2001) and GIFT by Vince Calhoun have enabled very solid noise differentiation, signal source 
estimation and population based analysis of resting state activity. 
 
Originally the functional connectivity measurements of Biswal (as well as the conventional BOLD 
activation) data analysis were based on region of interest or seed voxel based correlations. One of 
the distinctive strengths of this method is the exact knowledge on the features, which are used in 
detecting functionally connected regions. More advanced extensions like regional heterogeneity and 
seed voxel based self-organizing maps have emerged (Zang, et al., 2005). 
 
An early method of detecting periodic BOLD activations or fluctuations was FFT (Bandettini et al., 
1996, Kiviniemi, et al. 2000). Nowadays autoregressive and spectral coherence analysis (Sun et 
al.2005) seems very promising with regards to phase delay analysis of different fluctuations 
answering questions what is the temporal order of different oscillators. FFT power fit derivatives 
like fractal dimension analysis and Hurst exponent offer powerful tools for the characterization of 
BOLD signal variability without being constricted into one specific frequency (Bullmore, et al., 
2001, Welchew, et al., 2005). These methods enable the analysis of the combined effects of 
different oscillator simultaneously and enable the analysis of fluctuation wavelets rather than rigid 
periodicity. 



 
Feature space and multi dimensional scaling (MDS) represent a strongly emerging new field to 
cover the dimensionality problem often troubling analytics (Friston & Büchel, Thirion, et al. 2005). 
Canonical variate analysis can detect functional connected activity with normal statistical inferences 
with regards to the activity without making assumptions about the spatial correlations (Friston & 
Büchel). These methods have promising capabilities towards extending functional resting state 
analysis towards clinical applications.  
 
Beyond present clinical imaging  
 
Li was the first to show changes in resting state BOLD signal connectivity in Alzheimers disease 
(Li et al., 2002). Lowe soon also detected reduced connectivity in MS (Lowe, et al., 2002). Some 
findings of reduced connectivity have emerged on ADHD and Asperger’s disease.  A very 
significant set of findings was produced by Greicius, et al. (2003 & 2004), showing that a) resting 
state fluctuations of the brain are involved in a default-mode network engaged in surveillance and 
control of the resting brain b) importantly the early Alzheimer patients showed detectable 
differences in default mode rest activity. 
 
Beckmann was able to detect several brain networks with ICA of BOLD data. They further showed 
that also continuous arterial spin labeling perfusion data can be used in detecting the same networks 
repeatedly when analyzed with ICA (DeLuca et al., 2005). The detected networks have been shown 
to be involved in answering questions like what were the observed phenomena, where are they 
detected in space and what do the observations mean to the observer. The analysis of these 
networks may well be of clinical use in diseases not evident with present imaging methods.  
 
Fox, et al., as well as Fransson have showed during 2005 that the resting state networks have 
inversely correlating components, i.e. opposed phase networks in distinct regions of the brain. 
These networks are involved in multiple tasks of introspection, mentalization, and controlling inner 
milieu stability as well as surveillance of the external interior. Our group has detected significant 
alterations in these resting state networks and their inversely correlated components in a cohort 
study of psychiatric patients. Welchew and co-workers (2005) have pointed out profound changes 
functional connectivity with MDS in schizophrenics subjects. Increasing understanding of fractional 
noise and fractal dimension properties of brain oxygenation can take us beyond our present 
understanding of functional connectivity and it’s relation to brain patho-physiology (Maxim et al., 
2005).  
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