Spectral Editing — Uncovering Hidden Metabolites
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Introduction

Separating the Wheat from the Chaff, a subtitle from one of the first papers to use phase
modulation effects for spectral editing, provides a useful metaphor for the NMR editing
process. Any difference between buried and overlapping signals can be used for
separation and editing. Magnetic resonance provides a wide variety of properties that can
be used, including spin-coupling effects such as J-modulation and multiple quantum
behavior. Relaxation, diffusion and dynamic effects can also be used. In the case of J-
modulation and multiple quantum spin states, the difference is often exploited via a
weaker, but resolved spin-coupled signal. In cases where all of the coupled signals of a
desired metabolite are buried, 2D-spectroscopy may provide the necessary resolving
power. In the case of dynamic spectroscopy using exogenous stable isotopes, simple
difference spectroscopy may be sufficient. Spectral editing is especially important in
proton spectroscopy, where the signals from up to 20 metabolites are crowded into a
spectral region of less than 4 ppm. Adding to the difficulty for proton spectroscopy is the
dominating water and lipid signals, which can complicate the spectral baseline and give
rise to overlapping artifact signals. In a way, artifact reduction is a special case of
spectral editing. A few examples of spectral patterns of metabolites commonly edited for
are shown in figure 1.

g A wigey oy yogg ol yegagiy gegeny Regl ... .., L yoycy oy gy gl g g
. | naa 1.5T F
lia ‘ TE35 [
- Occipital -
- CE =
] | "
n A ml ol =
B || ;
& I‘ I : / | [ | b N
(Ll ] -
4 ! || \l nJ | o
: r-'-l W II__|I '-;l |I‘ ) IIF\LH_K '1".__ ."—_"—".’H-"-I___ =3 :
: "_r".l LY T = IHI f| e ‘L'h.____-J_ >
e e — — o -]TfaCtate S ||__I'I A i SN, SR
. Alanine »
= FARA L
N .___,-"l_ - N IJ"IL s STL M Ghatamnine B
n I -_-'”' W . Taurine =
] Glucose 5
B T T ] T I T L || T L] L T T T I T T ] ] L L] T 1 T | | T L] L] T ] T T ] | T T ] | T T L T T | T ] L .
4 3 Z 1 O
Frequenay ':F'F"_"'.;'

Fig. 1. Subspectra of lactate, alanine, GABA, glutamine, taurine and glucose at TE 35
along with an in-vivo spectrum.



13C-H from '*C-H: The Original Wheat From Chaff Example.

One popular way to edit is by spin-echo difference spectroscopy. This method takes
advantage of the phase modulation that occurs when two or more resonances in a coupled
spin system are simultaneously refocused via a spin-echo sequence (90-t-180-1-). If the
refocusing of one of the coupled spins is avoided or reversed on an alternate scan, then
the characteristic phase modulation does not occur, and a simple subtraction of the two
scans provides the editing. This is illustrated in the wheat from chaff example with the
separation of the carbon-13 satellites (1% at natural abundance) from the protons
attached to the carbon-12 parent. In a proton-only spin-echo, carbon-13 spins are not
refocused, and hence no heteronuclear Jcy phase modulation occurs. A second
acquisition, in which the carbon-13 spins are refocused, provides the modulation and the
basis for subtractive editing. Figure 2 shows the magnetization vectors for this editing
process.
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Fig. 2. Heteronuclear spin-echo difference spectroscopy. (a) The strong parent **C-H
(P), and the slow (S) and fast (F) component of the **C-H doublet are initially aligned
along the +Y axis. (b) They precess for a time zuntil F and S lie antiparallel (1/2Jcp). In
the first sequence (a), (b), (c), (d), (e), the proton 180 flips the vectors to mirror-image
positions along the —Y axis. In the second sequence (a), (b), (c), (f), (9), the introduction
of a carbon-13 180 at time zinterchanges the F and S labels (F), with the result that the
F and S vectors become aligned along the +Y axis at time 2z, whereas the P vector is still
returned to the —Y axis. Subtraction of the two removes the strong parent signal.

Single Shot Methods




Difference methods have the advantage that 1) they usually return 100% of the available
signal, and 2) nor do they destroy the non-edited signals, which unlike chaff, can be very
useful. The disadvantage is that this method is subject to subtraction errors, due to limits
in system and patient stability. Single shot methods avoid subtraction error, but lose one
and sometimes both of the advantages of difference editing. One way to convert the
example shown in Figure 2 into a single shot method is to replace the refocusing with a
gradient BIRD pulse as shown in Figure 3. The protons attached to carbon-12 are not
refocused and accumulate a phase across the sample equal to the 2G and thus cancel. The
protons attached to carbon-13 are refocused (coherence order, p goes from 1 to -1) and
the effect of the two equal gradient pulses cancels (often referred to as a primer-crusher
gradient).
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Fig. 3. Gradient-BIRD Spin Echo: Protons attached to carbon-13 are selectively
refocused.

Double quantum editing, with gradient selection, is another excellent single shot method
that has been used to edit for lactate, taurine, citrate, GABA, and glucose. In general

these methods are limited to 50% signal return, but have excellent selectivity. Figure 4
illustrates the basic gradient selective double quantum sequence.
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Fig. 4. Basic frequency-selective double-quantum sequence. The first 90 plus the first
and last 180’s can be slice selective to make a volume selective version of the sequence.
In the case of slice offsets the phase of the selective read pulses must be adjusted by ¢ to
optimize signal return.

T, weighting and J-Modulation

While non-coupled spins (e.g. water, or the methyl of NAA) just decay exponentially as
TE is increased in a normal spin echo acquisition, coupled spins such as the lactate
methyl doublet modulate. The left half of the doublet signal modulates at a frequency of -
J/2, while the right half of the double modulates at a frequency of +J/2, resulting in an
inverted doublet at TE = 1/2J = 144ms and returning to a positive doublet at TE = 1/J =
288ms. In neuro applications, T, weighting is often sufficient for lactate detection, where
the broad lipid and macromolecule signals are removed by difference in scalar relaxivity.
The modulation of the lactate signal can also add some specificity.

2D NMR

Addition of a second dimension can often provide the needed resolution to avoid other
forms of editing. For example, For example, a 2D J-Resolved experiment reveals lactate
as a ~7Hz doublet in two separate dimensions.

Artifacts and Issues

1. Co-edited signals can present a challenge. In the case of double quantum filter for
brain glucose, co-edited lactate is well resolved in chemical shift and can be an
advantage. However, in the case of spin-echo difference editing of GABA, a
macromolecular component (possibly mobile lysine moieties from the protein content)
co-edits at the same chemical shift as the GABA C4H protons and must be dealt with.
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Fig. 5 3T Spin Echo Difference GABA Editing.

2. Chemical Shift Registration Error. In a double spin echo PRESS localization scheme,
the selected volume for the lactate methine and the selected volume for the lactate methyl
signal are not completely overlapped. J-modulation requires refocusing of both the
methine and the methyl groups. Thus, the fraction of the lactate methyl signal coming
from a volume where the methine is not excited will not modulate, and will in fact cancel
some of the normally modulated signal at TE = 1/2J = 144ms. The amount of registration
error is:

Chemical Shift Difference/Effective Bandwidth [1]

This can be a significant effect for slice selective refocusing pulses and may typically
exceed 10%

3. Symmetric Vs Asymmetric PRESS. Collection of proton spectra at TE = 1/J for
lactate (TE 288) is also common, and further discriminates the long T, lactate from short
T, lipid signals. Also, since the lactate methyl signal is fully re-phased, cancellation of
signal due to chemical shift registration error is not a problem. However, if a symmetric
double spin echo sequence is used, [90-t-180-21-180-t-acquire], the non-refocusing
portion of the initial 90-t-180 sequence, will generate multiple quantum coherence,
leading to a reduction of lactate signal. For the same reason, the lactate methyl signal in
long TE data collected using the STEAM sequence [90-TE/2-90-TM-90-TE/2-acquire],
will be compromised and will depend on the mixing time TM. For this reason



asymmetric PRESS, where a minimum delay [90-tyin-180-] interval is highly
recommended.

4. Impact of Water Suppression Methods. One very effective water suppression method
used in long TE in vivo spectroscopy (MEGA/BASING) uses an evolution time inversion
pulse/gradient spoiler combination as the water stop band. In cases where this stop band
also includes the lactate methine at 4.1 ppm, the lactate methyl signal will not modulate.
An advantage of this is that no signal will be lost to the chemical shift registration error at
any TE. The disadvantage relative to other water suppression methods comes in MRSI
studies in which frequency variation (uncorrected in-homogeneity) across the volume
studied can place some voxels within the effective modulation stop band, some outside
and some in-between.

5. Out of Volume Lipid. One final artifact to look out for is signal from the out of
volume subcutaneous lipid as predicted by the spatial response function. This, along with
other phase encode errors can effectively leak unwanted signal into the region of interest
and ultimately obscure the reliability of lactate estimation.
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