MR Imaging of the Hip

Doris E. Wenger, M.D.
Mayo Clinic, Rochester, MN

Introduction

Indication for MR imaging of the hip
- AVN
- Occult Fractures
- Labral Tear
- Tumors
 - benign and malignant
 - detect and characterize
- Soft tissue injury
 - tendon tear, muscle strain, hematoma
- Arthritis
- Hip pain with negative conventional radiograph

Advantages of MRI
- Superior soft tissue contrast
- Multiplanar Imaging
- No iodinated contrast
- No exposure to radiation
- Sensitive, accurate & cost effective
- Provides comprehensive exam

Normal Anatomy of Hip Joint
- Synovial lined ball-and-socket joint
 - Femoral head constrained within relatively deep acetabulum
 - Designed to maintain stability while transmitting large forces
 - Peri-articular soft tissue structures contribute to stability
 --capsule, ligaments, labrum, muscles & tendons
- Articular Cartilage
 - horseshoe-shaped cartilage lines acetabulum
 - cartilage-devoid region of acetabulum medially → fossa
 - acetabular fossa covered by fibrofatty tissue, synovium and ligamentum teres
 - cartilage is thin (~3mm in thickness)
 - femoral head covered with cartilage (except @ fovea)
- Acetabular Labrum
 - attached to the rim of the acetabulum
 - deepens acetabulum and provides additional coverage of femoral head
 - comprised of fibrocartilage, triangular in cross section
 - ↑ thickness posterosuperiorly & thinner anteroinferiorly
- Joint Capsule
 - extends from margin of acetabular rim to base of femoral neck
 - proximal femoral physis is intracapsular and trochanters are extra-capsular
 - inserts to acetabular rim @ base of labrum
 --creates peri-labral recess
 - extrinsic ligaments (external to fibrous capsule)
 --reinforce the joint
 --pubofemoral, iliofemoral & ischiofemoral ligaments
 --zona orbicularis encircles capsule @ base of neck
- iliofemoral ligament restricts extension and posterior displacement of hip
- ischiofemoral ligament stabilizes the hip in flexion and adduction
- pubofemoral ligament restricts hip abduction
- iliopsoas tendon & bursa
 -- intimately associated with anterior aspect of hip joint
 -- direct communication between joint & bursa in 10-15% of the population
 -- hiatus between the iliofemoral and pubofemoral ligaments

- Ligamentum teres
 -- extends from acetabular notch to fovea capitus of femoral head
 -- carries artery of the ligamentum teres (supplies blood to femoral head in children)
 -- may serve as transarticular route for spread of tumor

MR Imaging Protocols
- Vary with indication and equipment
- General protocol categories
 - routine “screening” hip (R/O AVN, non-specific hip pain)
 - dedicated unilateral hip (internal derangement, lesion characterization)
 - MR arthrography (intra-articular gadolinium)
- Surface or phased array torso coil

<table>
<thead>
<tr>
<th>Routine “Screening” Hip MRI Protocol</th>
<th>Sequence/Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>SE T1</td>
</tr>
<tr>
<td>Imaging Plane</td>
<td>Axial</td>
</tr>
<tr>
<td>Coronal</td>
<td>Coronal</td>
</tr>
<tr>
<td>TR (ms)</td>
<td>500-600</td>
</tr>
<tr>
<td>TE (ms)</td>
<td>minimum full</td>
</tr>
<tr>
<td>NEX</td>
<td>2</td>
</tr>
<tr>
<td>Matrix</td>
<td>256 x 256</td>
</tr>
<tr>
<td>FOV (cm)</td>
<td>38 or to fit</td>
</tr>
<tr>
<td>Thickness/gap (mm)</td>
<td>7/3 (axial), 5/2.5 (coronal)</td>
</tr>
<tr>
<td>Fat Saturation</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unilateral Hip MRI Protocol</th>
<th>Sequence/Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>FSE-XL T2</td>
</tr>
<tr>
<td>Imaging Plane</td>
<td>Axial</td>
</tr>
<tr>
<td>Coronal</td>
<td>Coronal</td>
</tr>
<tr>
<td>Sagittal</td>
<td>Sagittal</td>
</tr>
<tr>
<td>TR (ms)</td>
<td>3500</td>
</tr>
<tr>
<td>TE (ms)</td>
<td>45</td>
</tr>
<tr>
<td>NEX</td>
<td>2</td>
</tr>
<tr>
<td>Matrix</td>
<td>256 x 256 (axial)</td>
</tr>
<tr>
<td>256 x 224 (cor & sag)</td>
<td></td>
</tr>
<tr>
<td>FOV (cm)</td>
<td>22 (axial), 24 (cor & sag)</td>
</tr>
<tr>
<td>Thickness/gap (mm)</td>
<td>6/2 (axial), 5/1 (cor & sag)</td>
</tr>
<tr>
<td>Fat Saturation/TRF/zip512</td>
<td>yes</td>
</tr>
</tbody>
</table>
MR Arthrography (2 step procedure)
1. Intra-articular gadolinium injection
 - Fluoroscopic guidance; use sterile technique & local anesthesia
 - Access joint with 22 g spinal needle
 - Document intra-articular position with 2-3 cc’s iodinated contrast
 -Inject diluted gadolinium solution
 – 10-15 cc’s (titrate to patient)
 – 1:200 Gadolinium: normal saline dilution (0.1 cc Gad: 20 cc’s NS)
2. MR Arthrography Imaging Protocol

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Imaging Plane</th>
<th>Sequence/Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSE-XL T1</td>
<td>FSE-XL T2</td>
</tr>
<tr>
<td>TR (ms)</td>
<td>Axial</td>
<td>Axial</td>
</tr>
<tr>
<td>TE (ms)</td>
<td>minimum full</td>
<td>40-45</td>
</tr>
<tr>
<td>NEX</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Matrix</td>
<td>256 x 224</td>
<td>256 x 256</td>
</tr>
<tr>
<td>FOV (cm)</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Thickness/gap (mm)</td>
<td>3/0.5</td>
<td>3/0.5</td>
</tr>
<tr>
<td>Fat Saturation/TFF/zip512</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

HIP PATHOLOGY

Labral Tears
- ↑’d attention in orthopedic & radiology literature over past decade
- Increasingly recognized as a cause of hip pain
- Patients present with inguinal pain, painful clicking, transient locking or giving way
- Pain with flexion, adduction & internal rotation
- Common etiologies
 - OA, DDH, Perthes, Trauma
- Less common etiologies
 - Subtle structural abnormalities
 - Femoroacetabular impingement

Femoroacetabular Impingement
- Pathogenic factor in development of “idiopathic” osteoarthritis of the hip
- Clinical characteristics
 - painful internal rotation of hip
 - positive impingement test (pain @ 90° flexion, adduction and internal rotation)
- Etiology
 - reduced concavity of anterior femoral head-neck junction or prominent acetabular rim
 - abnormal contact between neck & anterosuperior acetabular rim
 - associated with labral tears & cartilage defects
- Two major types
 - CAM & Pincer
• Conventional radiographic findings
 – decrease in femoral head-neck offset
 – retroversion of the acetabulum
 – osteophytic or cystic changes in region of anterosuperior femoral neck
 – cystic change & sclerosis in the roof of the acetabulum

• MR imaging findings
 – labral tear (usually anterosuperior)
 – chondromalacia
 – subchondral degenerative change & edema
 -- femoral head-neck junction
 -- roof of acetabulum

• Treatment options
 – periacetabular osteotomy
 – femoral head-neck re-contouring procedure
 – proximal femoral osteotomy

• Diagnosis
 – combination of radiograph & MRI
 – Many structural abnormalities can be identified on conventional radiographs
 – familiarity with structural abnormalities on radiography is critical
 -- early detection
 -- accurate diagnosis
 -- optimize treatment plan & prognosis
 -- prevent or delay pain & disability

Normal Acetabular Labrum

• Homogeneous low signal intensity
• Triangular morphology
• Continuous attachment between labrum and acetabulum
• Peri-labral recess between labrum and joint capsule

Abnormal Acetabular Labrum

• Labral degeneration
 – abnormal signal intensity within substance of labrum

• Labral tear
 – round, blunted or flattened morphology
 – intra-substance contrast material or abnormal signal extending to labral margin
 – most commonly occur in anterosuperior quadrant of the labrum

• Labral detachment
 – displaced or non-displaced
 – abnormal signal or contrast insinuation between labrum and acetabulum

• Labral thickening
 – loss of normal recess between labrum and joint capsule

Injuries Associated with Labral Tear or Detachment

• Chondral defects
 – occur in up to 30% of patients with labral lesion

• Para-labral Cyst
 – may be seen with labral tear, especially with labral detachment
 – ↑ prevalence in OA, DDH & post-traumatic injury
– juxta-articular, usually superolateral or anterosuperior
– may or may not fill with gadolinium @ time of MR arthrography
– identification of cyst → should raise clinical suspicion of underlying labral tear

Staging of Acetabular Labral Lesions (see Figure 1)

- Stage 0
 – homogenous low signal intensity with triangular morphology
 – normal acetabular – labral interface and peri-labral recess
- Stage 1 A
 – presence of intra-labral signal which does not extend to labral margin
- Stage 2 A
 – presence of intra-substance contrast material extending to labral margin
- Stage 3 A
 – displaced or non-displaced labral detachment from acetabulum
- Stages 1 through 3, Type B
 – as described in Type A 1-3 with addition of hypertrophy of labrum
 – obliteration of peri-labral recess

Figure One: Schematic diagram illustrating the classification system used to stage labral abnormalities (Czerny et al, Radiology 1996; 200:225-230)
Accuracy of MRI for Diagnosis of Acetabular Labral Tear

- MR arthrography
 - 90% sensitivity
 - 91% accuracy
- Conventional MR imaging
 - 30% sensitivity
 - 36% accuracy

Advantages of MR Arthrography

- Accurate anatomic delineation of labral anatomy and pathology
- Increased sensitivity for detection of labral pathology
 - contrast dissects into labrum or between labrum and acetabulum
 - ↑ conspicuity labral tear and/or detachment
- Comprehensive evaluation of bones & soft tissues within and about the joint

Osteonecrosis

- Femoral head is the most common site
- Pathogenesis → vascular compromise
 - intra-osseous hypertension with vascular stasis
 - thromboembolic abnormalities
 - traumatic disruption of blood vessels
- Risk Factors
 - corticosteroids
 - alcoholism
 - pancreatitis
 - hemoglobinopathies (sickle cell disease)
 - collagen vascular disease
 - trauma
 - barotrauma

MR Imaging of AVN

- Sensitivity, specificity & accuracy of MRI for diagnosis of AVN is > in 90%
- MRI is more sensitive than CT or nuclear scintigraphy
- MRI is 97% sensitive and 98% specific in differentiating AVN from other pathology
- MRI also effective for evaluating for associated joint effusion & marrow edema
 - edema may extend to intertrochanteric region (especially with Stage III)
 - joint effusions are variable in size (larger in Stage III and IV)
- Imaging features vary with stage and extent of disease
- Focal subchondral signal abnormality on T1 and T2 weighted images
 - crescentic, round, band-like focus of abnormal subchondral signal
 - may be demarcated by a serpiginous margin

- “Double Line Sign”
 - pathognomonic for AVN
 - concentric bands of low & high SI on T2 weighted images
 - reactive granulation tissue at interface between necrotic & normal bone
Transient Bone Marrow Edema
- Also known as transient osteoporosis
- Self-limited disorder, gradual onset of pain over weeks to months
- May be regional and migratory
- Gradual onset of pain over weeks to months
- Typical affects patients in the 20-50 year age range
- Male to female ratio 3:1
- Hip is the most common joint involved

Imaging features of Transient Bone Marrow Edema
- Radiographs shows regional osteopenia of femoral head and neck
- No erosions or joint space narrowing
- MRI is the imaging modality of choice
 - highly sensitive and specific
- MR imaging findings
 - ill-defined region of signal abnormality with low T1 & high T2 signal
 - involves femoral head & neck from joint surface to intertrochanteric region
 - absence of focal subchondral defect to indicate etiology due to AVN or fracture
 - signal abnormality resolves over 3-6 months if followed with sequential MRI

Fractures
- MRI sensitive & specific for occult fracture detection
 - stress fractures
 - non-displaced traumatic fractures (e.g. femoral neck)
- Accurate diagnosis can be difficult on radiographs
 - especially elderly osteoporotic patients
- Early and accurate diagnosis is critical for prompt and appropriate treatment
- MRI is imaging modality of choice
 - patients with high clinical suspicion of fracture & negative radiograph
- Spectrum of fractures detected on MRI with negative x-ray
 - femoral neck fractures
 - intertrochanteric fractures
 - stress fractures
 - subchondral insufficiency fracture of the femoral head
 - extra-articular sites
 --pubic rami
 --sacrum
 --supra-acetabular ilium

- Stress Fractures
 - fatigue
 --abnormal stress applied to normal bone
 - insufficiency
 --normal stress applied to abnormally weakened bone
- Etiology of insufficiency fractures
 - osteoporosis
 - RA
 - osteomalacia
 - renal osteodystrophy
 - radiation
- MR imaging of insufficiency type stress fractures
 - comparable sensitivity & superior specificity to nuclear scintigraphy
 - T1 weighted images
 --linear focus of low SI
 --surrounded by larger ill-defined region of hazy or reticulated ↓ in SI

7 Doris Wenger, M.D.
- T2 weighted images
 --linear focus of low SI
 --surrounded by larger region of high SI
 --signal abnormality >>'r than on T1
 --↑ sensitivity for detection with fat suppression techniques
 --frequently associated with soft tissue edema

- **Subchondral insufficiency fracture of femoral head**
 --typically seen in osteoporotic women
 --acute onset of pain
 --no risk factors for AVN
 --MR imaging
 --bone marrow edema which may extend to intertrochanteric region
 --transverse linear focus of low SI in subchondral region of femoral head
 --may progress to subchondral collapse

Arthropathies
- Differential diagnosis for arthritides of the hip joint
 --osteoarthritis
 --inflammatory arthritis
 --septic arthritis
 --other (PVNS, synovial chondromatosis)
- MRI is not usually required for diagnosis. Correlation with radiographs is critical.

Septic Arthritis
- More common in children than adults
- Risk factors
 --septicemia
 --previous joint injection
 --immunocompromised status
- Radiographs
 --may be negative
 --osteopenia
 --periarticular soft tissue swelling
 --± erosions & joint space narrowing
- MR imaging features
 --joint effusion & synovitis
 --± erosions & joint space narrowing
 --late stage may reveal extra-articular extension
 --periarticular soft tissue edema
 --soft tissue abscess
 --osteomyelitis

Pigmented Villonodular Synovitis
- Benign proliferative synovial process
- Involves joint, bursa or tendon sheath
- Typically affects young to middle-age adults
- Anatomic sites of predilection
 --knee (80%), hip, ankle, shoulder
- Conventional Radiography
 --hyperdense joint effusion
 --preservation of joint space & bone density, ± bone erosions
- MR Imaging Features
 --joint effusion with nodular synovial thickening
 --nodular masses with low SI on T1 & T2 weighted images
--due to hemosiderin deposition
– low SI nodules typically surrounded by high SI fluid on T2 weighted images
– ± blooming on gradient echo image acquisition
– differential diagnosis
 --synovial chondromatosis
 --chronic proliferative synovitis
 --hemophilic arthropathy

Synovial Chondromatosis

• Cartilage metaplasia in synovium
• Monoarticular disease, M:FM ratio 2:1, peak incidence 3rd-5th decade
• Skeletal distribution
 – knee (50%), hip, elbow, shoulder, ankle
• Conventional radiography
 – multiple, calcified intra-articular loose bodies of fairly uniform size
 – 70-75% show calcification on x-ray
 – preservation of joint space & normal bone density
• MR Imaging features
 – joint effusion (high SI on T2 weighted images)
 – multiple tiny round low signal intensity nodules of uniform size
 – low SI on T1 & T2
 --low T2 signal reflects calcification/mineralization
 – ± bone erosions
 – differential diagnosis on x-ray
 --osteoarthritis
 --trauma
 --osteochondritis dissecans
 --neuropathic joint disease
 – differential diagnosis on MRI
 --PVNS
 --rheumatoid arthritis
 --chronic proliferative synovitis

Miscellaneous Pathology-Diagnostic dilemmas & tumor simulators

• Occult neoplasms (e.g. lymphoma)
• Osteoid osteoma
• Calcific tendonitis
• Myositis ossificans

Bibliography

42. Steinberg ME, Hayken GD, Steinberg DR. A quantitative system for staging avascular necrosis. JBJS (Br) 1995;77:34-41.