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Introduction 
Understanding early human brain development is of great clinical importance, as many 
neurological and neurobehavioral disorders have their origin in early structural and functional 
brain development. With conventional magnetic resonance imaging we have been able to 
delineate macroscopically early developmental  events such as myelination and gyral 
development. Diffusion tensor imaging (DTI) is a relatively new MR modality that assesses 
water diffusion in biological tissues at a microstructural level (1). 
The developing human brain presents several challenges for the application of diffusion tensor 
imaging (DTI).  Values for the water apparent diffusion coefficient and diffusion anisotropy 
differ markedly between pediatric brain and adult brain and vary with age.  As a result, much of 
the knowledge regarding DTI derived from studies of mature, adult human brain is not directly 
applicable to developing brain.  Yet in these challenges also lies opportunity, as changes in water 
apparent diffusion coefficient and diffusion anisotropy during development provide unique 
insight into the structural basis of brain maturation.   
 
In addition to providing information on brain maturation, DTI may be used to evaluate brain 
injury.  It is well known from studies of animals (3) and adult humans (4) that DTI can serve as 
an early indicator of stroke, often demonstrating image abnormalities on water diffusion maps 
well before conventional MRI.  Early detection of injury is particularly critical in the context of 
administration of neuroprotective therapies to infants.  These therapies must typically be initiated 
quickly – within hours of onset of injury – in order to interrupt the cascade of irreversible brain 
injury.  Because these interventions are in themselves not without risk to the developing brain, it 
is of utmost importance to develop imaging tools that can reliably identify ongoing brain injury 
early to prevent treatment of non-injured patients (5).  Water diffusion maps derived from DTI 
may provide the means for this early detection of injury.  Changes in diffusion characteristics 
further provide early evidence of both focal and diffuse brain injury in association with 
periventricular leukomalacia (PVL), the most common form of white matter injury in the preterm 
infant (6). Finally  with the development of 3D diffusion tensor fiber tractography maturation of 
white matter and its consequences for white matter connectivity can be followed throughout 
infant development into adulthood with the potential to study correlations between abnormalities 
on DTI and ultimate neurologic/cognitive outcome (7). 
 
In the course, we will discuss the changes in DTI parameters associated with normal brain 
maturation as well as their response to brain injury. It is worth noting that the precise DTI 
parameters to employ is open to question. Diffusion parameters describing the brain’s 
microstructure include the three diffusion eigenvalues (λ1, λ2, λ3),  the apparent diffusion 
coefficient and a mathematical measure of anisotropy. There is a general consensus that the 
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directionally-averaged, rotationally-invariant water diffusion coefficient (the average apparent 
diffusion coefficient, or Dav) is a useful parameter to derive from the diffusion tensor and serves 
as an indicator of brain maturation and/or injury.  Dav, is calculated as one third of the trace of 
the diffusion tensor, and provides the overall magnitude of water diffusion independent of 
anisotropy(8). In contrast, the descriptions of water diffusion anisotropy used by different 
research groups varies (e.g., lattice anisotropy index, relative anisotropy, fractional anisotropy, 
A , color directional plots of anisotropy, «vector maps» or «whisker plots,» gamma variate 
anisotropy images).  These different representations of anisotropy are related to one another; 
their mathematical interconversions ranging from multiplication by a simple constant to 
complete recalculation using the underlying eigenvectors (9) in which the primary eigenvector 
describes the diffusivity parallel to axonal bundles, while the second and third eigenvector 
describes diffusivity orthogonal to the axonal bundles. Further, the optimal means by which to 
display water diffusion anisotropy remains an area of active investigation (10).  Relative 
anisotropy (RA) or fractional anisotropy (FA) is an indicator of the degree of water diffusion 
anisotropy independent of the overall water diffusion coefficient.  RA is zero for isotropic 
diffusion (diffusion that is equal in all directions) and approaches 1 as anisotropy increases.  
Notably, RA is linear over the total range of anisotropy values (9) for which there is some 
indication that the term FA  represents changes in very low anisotropy such as found in the 
immature brain better than RA (10). Vector maps, which are typically overlaid on structural 
images, indicate the orientation of the major eigenvector of the diffusion tensor.  They provide 
an indication of the direction in which water diffusion is highest, which typically is parallel to 
white matter tracts. Fiber tracking uses each voxel’s primary eigenvector of the diffusion tensor 
to follow an axonal tract in 3D from voxel to voxel through the brain, thus allowing to delineate 
specific cerebral white matter connectivity.  All three parameters are orientation-independent, 
meaning that they are not affected by the position of the subject in the MR scanner magnet 
relative to the orientation of the magnetic field gradients used to measure the diffusion values.  
 
One aspect of DTI which differs between newborn infants and adults is the optimum b value at 
which to make the measurement.  In general, a b value corresponding to approximately 1.1/Dav 
provides the greatest contrast-to-noise ratio for such a measurement (11).  In adult humans, the 
high b value is typically on the order of 1000 mm2/s.  For infant brain, which has higher values 
for Dav , b values on the order of 700-800 mm2/s are used.  Otherwise, similar MR pulse 
sequences and post processing methods are used for both infant and adult human brain DTI. 
 
DTI in Normal Brain Development 
Dav values differ between pediatric and adult human brain in two primary ways.  First, Dav values 
are higher for pediatric brain than adult.  For example, Dav values for the white matter of the 
centrum semiovale in premature infants (12, 13)approach 2.0 x 10-3 mm2/s, while values for 
adult brain are typically 0.7 x 10-3 mm2/s.  Dav values decrease with increasing age in a 
monotonic fashion during development until they reach adult values (14, 15) .  Second, Dav maps 
of pediatric brain show contrast between white and grey matter, with the Dav values for white 
matter being higher than those for grey matter (see Figure 1) 
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The center column consists of Dav parametric  

maps for which higher values of Dav appear 
brighter.  The right column consists of 
relative anisotropy (RA) parametric maps 
for which higher values of RA appear 
brighterThese changes are not necessarily 
simultaneous in all brain regions. Partridge S 
et al (16) defined white matter tract 
maturation in commissural tracts, such as the 
corpus callosum, in projection tracts such as 
the corticospinal tracts both inside the 
internal capsule as well as in the centrum 
semiovale and in association tracts such as 
the cingulum or the inferior longitudinal 
fasciculus using a high resolution DTI 
sequence. The lowest values of Dav was 
found in the projection fibers of the internal 
capsule and the cerebral peduncles with 
decreasing values from 30 to weeks 
gestational age to term age (normal gestation 
newborn). The greatest decrease in Dav over 
the observed time period occurred in the 
lower centrum semiovale (16).  The precise 
cause of the decrease in Dav with increasing 
age is not known, though it has been Axial 
images at the level of the basal ganglia from 
subjects of differing ages.  Anterior is up and 
posterior is down.  The top row is from a 

premature infant of 26 weeks gestational age.  The middle row is from a term infant of 40 weeks 
gestational age.  The bottom row is from a 7-year-old.  The left column consists of T1-weighted 
images for anatomic reference.  The center column consists of Dav parametric maps for which 
higher values of Dav appear brighter.  The right column consists of RA parametric maps for 
which higher values of RA appear brighter.  All three subjects were normal at the time of the 
study.postulated that the rapid decrease observed between early gestation and term is due to the 
concomitant decrease in overall water content (13).  For reference, the Dav of free water at body 
temperature is approximately 3.0 x 10-3 mm2/s.  Thus, there is some restriction to water motion 
even for the highest Dav values measured in premature infants, which are on the order of 2.0 x 
10 3 mm2/s.  Brain water content decreases dramatically with increasing gestational age.  As it 
does, structures that hinder water motion (e.g., cell and axonal membranes) become more 
densely packed, increasing restriction to motion; as if the brain becomes more viscous as its 
water content decreases. That not all of these changes in Dav are due to reduction in overall water 
content is confirmed by measurements of the three eigenvalues λ1, λ2, λ3, which represent 
diffusion along the three major principal axes. During white matter development changes in 
diffusion (decrease) are observed primarily in λ2, λ3 and not in λ1, which reflect changes in 

Figure 1 Axial images at the level of the basal 
ganglia from subjects of differing ages (2)  
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water diffusion perpendicular to white matter fibers and may indicate changes due to 
premyelination (change of axonal width) and myelination(14).  
Differences in water content may also underlie the contrast present between white and grey 
matter in pediatric brain, though not in a simple fashion.  In adult brain, the water content of 
white matter is substantially lower than that of grey matter (65% vs. 85%23), yet the Dav values 
for the two regions are virtually identical (17).  This implies that white matter is less restrictive 
to water motion than grey matter at a given water content.  This may be related to the fact that 
water motion parallel to axons is relatively unrestricted, especially in comparison to motion 
perpendicular to axons or in grey matter.   In the premature brain, water content is similar in 
white and grey matter.  The finding of higher Dav values in white matter than grey for premature 
brain despite their similar water content is also consistent with the idea that white matter is less 
restrictive to water motion than grey matter.  In adult brain, this difference in restriction appears 
to be offset by the differing water contents of the two areas. 
 
Anisotropy values also differ between adult and pediatric brain.  For children beyond term and 
for adults, anisotropy values for cortical grey matter are consistent with zero, meaning that water 
diffusion in grey matter is isotropic at the spatial resolutions currently available.  Anisotropy  
values for white matter areas, on the other hand, are relatively low in infants and increase 
steadily with increasing age(18). As with changes in values for Dav, changes in relative or 
fractional anisotropy take place more quickly early in development.  While changes in Dav and 
anisotropy for white matter typically take place in tandem, with Dav values decreasing and 
anisotropy values increasing during maturation, it is important to bear in mind that the two 
parameters are theoretically independent of one another.  Thus, a change in one is not always 
accompanied by the opposite change in the other.  For example, the decrease of anisotropy of 
cerebral cortex that takes place between 26 and 32 weeks gestational age is accompanied by a 
decrease in Dav(2).  
 
The increase in white matter anisotropy values during development appears to take place in two 
steps.  The first increase takes place before the histologic appearance of myelin  (12, 13).  This 
increase has been attributed to changes in white matter structure which accompany the 
«premyelinating state» (19).  This state is characterized by a number of histologic changes, 
including an increase in the number of microtubule-associated proteins in axons, a change in 
axon caliber, and a significant increase in the number of oligodendrocytes.  It is also associated 
with changes in the axonal membrane, such as an increase in conduction velocity and changes in 
Na+/K+-ATPase activity.   Interestingly the commissural fibers in the splenium and the genu of 
corpus callosum express the highest fractional anisotropy values in the immature human brain 
(16). These fibers are largely unmyelinated in the newborn period (20) and their high anisotropy 
is in part due to a high degree of parallel organization.  The second, more sustained increase in 
anisotropy, is associated with the histologic appearance of myelin and its maturation. The 
increase in anisotropy associated with premyelination is notable in that it takes place in the 
absence of changes in T1- or T2-weighted imaging as well as before the histologic appearance of 
myelin.  Thus, it constitutes the earliest indication of impending myelination. The earliest signs 
of this second stage change in anisotropy is observed in the projections fibers of the posterior 
limb of the internal capsule in the newborn period. This two-stage increase in white matter 
anisotropy takes place at different rates for different brain areas, as does brain maturation(21).  
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Regional anisotropy is clearly influenced by other factors than myelination alone, such as axon 
packing, relative membrane permeability to water, internal axonal structure, and tissue water 
content.   
 
Another brain area in which anisotropy values differ between immature and mature brain is 
cerebral cortex.  Anisotropy values of cortical grey matter in adult brain are generally consistent 
with zero (i.e., diffusion is isotropic).  As shown in several human and animal studies now, 
values for cortical grey matter in immature brain are transiently nonzero during development 
(22-25). A recent study on human fetal brain has shown that cortical anisotropy increases from 
15 weeks gestation to approx. 27 weeks gestation and then shows a gradual decline to 32 weeks 
gestation (26) The increase of anisotropy in this time period coincides with active neuronal 
migration along the radial glial scaffolding, whereas the decrease coincides with the phase of 
neocortical maturation with transformation of the radial glia into the more complex astrocytic 
neuropil. During the gestational ages for which anisotropy values are nonzero, cortical 
cytoarchitecture is therefore dominated by the radial glial fibers that are present across the 
cortical strata and by the radially-oriented apical dendrites of pyramidal cells(27).  With time, 
this architecture is disrupted by the addition of basal dendrites as well as thalamocortical 
afferents, which tend to be oriented orthogonal to the apical dendrites. Again these observation 
of microstructural brain development are not homogenous throughout the brain but show 
considerable regional differences, with cortical anisotropy decreasing first in precentral cortex, 
followed by occipital and frontal cortex (28) and even changing laterality throughout 
development(26). Unlike the changes observed in immature white matter the change in fractional 
anisotropy observed in the cortex are mainly due to  significant decrease  in λ1 with no changes 
in λ2 and λ3 (28). Thus, the relatively large decline in λ1, oriented radially in 25 to 40 weeks 
gestation cortex means that the maturational loss of cortical anisotropy is due to a reduction in 
the radial component of water diffusivity. Thus developmental changes in anisotropy of cerebral 
cortex reflect changes in its microstructure, such as the arborization of basal dendrites of cortical 
neurons, the innervation of the cortical plate by thalamocortical and cortico-cortical fibers, 
transformation of radial glia into mature astrocytes, all processes, which are an important basis 
of later functional connectivity. 
 
Vector maps also provide information regarding anisotropy.  In the case of cortical grey matter, 
the vectors are oriented radially, consistent with the orientation of the radial glial fibers and 
apical dendrites of pyramidal cells (22). Vector maps of white matter provide a visual indication 
of white matter organization.  Thus it is possible to produce an image of the overall orientation 
of white matter fibers in a given area.  
The very immature brain is further characterized by a laminar organization with an immature 
cortical plate (as described above), a prominent subplate, an intermediate zone (corresponding to 
the later white matter) and the important area of germinal matrix, the origin of both neuronal and 
glial cell migration. Using vector maps derived from DTI this laminar organization can be 
visualized both in the immature primate (25) as well as human brain (23). Using an advanced 
pixel classification system in which specific patterns of Dav and anisotropy are detected 
automatically the immature human brain can be subdivided into cortical plate, subplate zone, 
deep-to subplate layers including the intermediate zone the subventricular zone and the germinal 
matrix(23). The germinal matrix itself was shown to express a gestational dependent decrease in 
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anisotropy from 15 weeks gestation to about 32 weeks, when the germinal matrix starts to 
disappear (26). 
Fiber tracking  is another recent technique applied to the developing brain to study quantitative 
assessment of specific pathway maturation (29)  
Figure 2. Major white matter fiber tracts in a term newborn (30).  

Bermann et al (31) were able to show significant 
differences in the maturational changes in 
fractional anisotropy and transverse diffusion  
between the motor and the somatosensory 
pathway in premature infants between 30 and 40 
weeks gestational age. This approach further 
allowed to measure diffusion changes across 
multiple levels of the functional tract (31).  
Alteration of white matter organisation in 
preterm infants compared to fullterm newborns 
have been shown using DTI (12).  As discussed 
below, this orientation may be disrupted due to 
injury.  It is also worth noting that vector maps 
can be used to follow white matter tracts as they 

course through the brain (32).   
 
 
 
DTI and Injury during brain development 
Neonatal brain injury is either characterized by hypoperfusion and/or hypoxemia followed by 
reperfusion as the infant is resuscitated, typically shortly after delivery or by chronic exposure to 
infection and inflammation. Hypotheses put forth to explain brain injury often take both 
mechanisms – hypoxia/ischemia and reperfusion and infection/inflammation – into account.  
Neuronal  death appears to involve both necrosis and apoptosis (33).  Molecular mechanisms 
proposed to explain injury to both neurons and glia include accumulation of:  cytosolic calcium, 
free radicals (including nitric oxide), cytotoxic amino acids, and cytokines (34).  Periventricular 
leukomalacia, PVL, is a unique pattern of neonatal brain injury that is most often found in 
preterm infants.  Pathologic abnormalities are characteristically localized to the white matter 
dorsal and lateral to the external angles of the lateral ventricles and involve primarily the 
centrum semiovale (35).  This white matter region is thought especially vulnerable to injury in 
the preterm infant because of the nature of  its blood supply and particular sensitivity to 
proinflammatory cytokines triggered by stimuli such as hypoxia-ischemia and infection (36).   
As indicated in the introduction, values for Dav decrease quickly after injury in most models 
studied, providing evidence of injury on maps of Dav before the injury is detectable on 
conventional imaging.  The decrease in water diffusion associated with injury was initially 
described for animal(37, 38)  and adult human (4) stroke, and was subsequently confirmed for 
human infants (39).  Interpretation of ADC values to dtect acute brain injury in the developing 
brain needs to be adjusted for the regional differences in ADC values according to age.  
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Figure 3: Regional ADC values in the newborn brain (39) 

There is not yet a consensus on 
the precise mechanism for the 
decrease in Dav associated with 
injury.   
Changes in Dav following injury 
are dynamic.  Dav values are 
initially decreased, but 
subsequently increase so that they 
are greater than normal and 
remain so in the chronic phase of 
injury.  During the transition 
between decreased and increased 
values there is a brief period 
during which values are normal, a 

process referred to as «pseudonormalization.»  Pseudonormalization takes place roughly two 
days following stroke in a rat model (40) and at approximately nine days following injury in 
adult human stroke (41).  Preliminary data indicate that the timing of pseudonormalization in 
human newborns more closely follows that of adult humans than rodents, taking place at roughly 
seven days following the injury (42). The time course of these changes is complex, however, and 
may vary somewhat with the nature of the injury (hypoxia-ischemia, inflammation, trauma), the 
relative vulnerability of different brain areas to injury, and other processes such as primary and 
secondary energy failure (43).  Given the dynamic nature of these changes, it has been suggested 
that a combination of conventional and DTI images and magnetic resonance spectroscopy can be 
used to estimate the age of an injury to the central nervous system.  During the first days 
following an injury, there are abnormalities on Dav maps, due to decreased water Dav, but not T2-
weighted images.  Subsequently, abnormalities are visible on both Dav maps and T2-weighted 
images.  Roughly one week after the injury, the Dav map will become normal due to 
pseudonormalization, but the injury will be visible on T2-weighted images.  With chronic injury, 
the lesion will be visible again on Dav maps, but now as an increase in water Dav rather than a 
decrease (44). 
 
The dynamic nature of the changes in Dav following injury makes it difficult to directly compare 
conventional MRI with DTI for detection of injury.  Which method is most sensitive to injury – 
T2-weighted imaging, T1-weighted imaging, or Dav maps – varies with time after injury.  Studies 
in which MR imaging is done at roughly one week after injury, the approximate time at which 
pseudonormalization takes place, tend to find that conventional imaging is as good as or better 
than DTI(45).  Studies in which the imaging is done somewhat earlier tend to find more utility 
for DTI(46).  Studies in which a series of images are obtained from the same infant over 
time(42) indicate that DTI is more useful during the first few days after injury, whereas 
conventional imaging, particularly T2-weighted or FLAIR imaging, is more useful at later times.  
Overall, the primary difference between DTI and conventional imaging is the capability of DTI 
to often detect injury earlier.  This may offer advantages in the future if neuroprotective agents 
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become available and early detection of injury becomes important for deciding whether or not to 
administer them to a particular patient.  It is worth noting, however, that DTI may not 
necessarily always demonstrate injury earlier than conventional MR imaging and MRS might 
indicate metabolic alterations in otherwise normal imaging studies prior to 24h after injury(42, 
47-49).   
 
Anisotropy of white matter also changes following injury.  The changes appear to take place 
over several days to weeks.  At the simplest level, anisotropy values are reduced dramatically in 
areas in which white matter is lost, such as porencephalic cysts(50).  Studies with pediatric and 
neonatal stroke also indicate that Wallerian degeneration is detectable as changes in anisotropy 
distant from the site of infarction (51).  Changes in anisotropy involving both anisotropy 
measurements and vector maps will likely prove especially relevant in premature infants, who 
tend to sustain injury to white matter.  In the chronic stage of PVL, reductions in relative 
anisotropy may be present and vector maps may show disruption of white matter tracts distant 
from the focal, cystic lesions detected by conventional imaging (52).  In this case, changes in 
anisotropy are detectable not only near the site of primary injury (the periventricular white 
matter), but also in the posterior limb of the internal capsule, indicating a disturbance of 
developing fibers which project through this area (52) . Thus, anisotropy and vector maps 
demonstrate injury that is not detectable by more conventional means.  Further, changes in RA 
and fiber maps may provide insight into post-injury brain plasticity (53, 54).  The clinical 
relevance of injury and related modification of white matter architecture detected in this fashion 
is not yet known, and long-term follow up studies are currently underway (55). 
 
Conclusions 
Important changes in water apparent diffusion coefficient and diffusion anisotropy accompany 
brain maturation.  These changes reflect changes in brain tissue microstructure.  In the case of 
grey matter, this may reflect changes in the dendritic architecture of pyramidal cells, the 
presence or absence of radial glial fibers.  In the case of white matter, this is due to both 
«premyelination» changes and myelination itself.  Thus DTI offers a unique, noninvasive 
window into brain maturation which can be readily applied to human development. 
 
DTI parameters also show distinct changes in response to brain injury.  Decreases in the water 
apparent diffusion coefficient may serve as an early indicator of brain injury which could prove 
useful in the context of rapidly determining the presence/absence of injury in anticipation of 
therapeutic intervention with neuroprotective therapies for the developing brain.  Chronic 
changes in water anisotropy and the evaluation by DTI vector imaging are sensitive to injury-
related impairment of subsequent white matter development and brain connectivity, providing 
evidence of disruption in areas much more widespread than detected through conventional 
imaging.  Thus DTI is potentially of great value clinically for evaluation of injury and plasticity 
in developing brain.  
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