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Introduction 
 
Standard clinical MR images, however anatomically detailed, generally do not allow the 
assessment of specific white matter (WM) fiber tracts. Diffusion tensor imaging (DTI) and DTI-
based fiber tracking (“tractography”) have enabled unprecedented, in vivo visualization of 
individual WM tracts and their relationships with cerebral pathology. While much of the work in 
this field remains experimental, DTI is currently making its way into the clinical realm. It is no 
longer necessary to have a team of physicists and image processing specialists on hand in order 
to obtain DTI with tractography in a clinical setting. As tractography makes further inroads into 
clinical practice, an understanding of basic principles and applications will become increasingly 
important to neuroimaging specialists. This presentation begins with a brief summary of the 
basic principles underlying tractography, followed by a review of practical clinical applications 
including potential pitfalls. Time and space limitations prohibit a review of normal WM fiber 
tract anatomy but several references to DTI-specific anatomical reviews are provided. 
 
 
Principles of DTI Tractography 
 
The orientation of the diffusion tensor major eigenvector is generally assumed to be parallel to 
the local white matter fascicles.  These directional patterns may be visualized using 2D color 
maps representing the major eigenvector direction, the most common example being the use of 
red, green, and blue (RGB) color channels to represent left-right, anterior-posterior, and superior-
inferior directions, respectively [1]. Color intensity is often weighted by an index of diffusion 
anisotropy (most commonly the fractional anisotropy [FA]), yielding a convenient summary map 
from which the degree of anisotropy and the local fiber direction can be determined. Such maps 
are particularly appealing because anyone familiar with normal fiber tract anatomy can readily 
survey the organization of the major tracts by paging through the 2D sections just as standard 
clinical MR images are typically viewed. Moreover, the relationship of a lesion to specific tracts 
in the region is often readily assessed. Similar directional maps have been made using a wide 
variety of display strategies but the RGB approach is probably the most common.   
 
Another approach to depicting white matter connection patterns is to employ mathematical 
algorithms that attempt to follow the trajectories of individual fiber tracts in 3D. Such trajectories 
are estimated by starting at a specified location (known as the “seed” point), estimating the 
direction of propagation (often defined by the major eigenvector), and moving a small distance 
in that direction. The tract direction is then re-estimated and another small step is taken. This 
process is repeated until some predetermined criterion for terminating the tract has been met. The 



resulting “tractograms” may be displayed in a variety of ways using 3D computer-graphical 
techniques.  
 
Most tractography algorithms estimate a single discrete trajectory for each seed point location. 
Many of these algorithms use the major eigenvector to estimate the tangent of the trajectory for a 
white matter fiber bundle [2-4] although tracing methods based upon the full diffusion tensor 
field have also been developed [5-7]. Seed locations are usually defined either globally over the 
entire brain or in a user-specified region. Tracts are typically propagated in both forward and 
reverse directions until some termination criterion is met; commonly employed criteria include: 
intersecting a voxel where the anisotropy is below a specified threshold or encountering an 
excessively sharp “bend” between steps along the putative tract. Tracts may be defined by 
constraining them to pass through one or more specified regions of interest [8,9]. 
 
Tractography algorithms are capable of generating anatomically plausible estimates of white 
matter trajectories in the brain and they have been used to depict major projection pathways (e.g. 
pyramidal tract, internal capsule, corona radiata), commissural pathways (e.g. corpus callosum, 
anterior commissure), and association pathways (e.g. arcuate, frontooccipital, and uncinate 
fasciculi) [8-12]. Of course, it must be remembered that a given DTI-based trajectory does not, 
indeed cannot, correspond directly to an actual axonal fiber tract, given the discrepancy of scale 
between the microstructural anatomy and the spatial resolution of clinical imaging. This point is 
easily forgotten when admiring the aesthetic depictions of WM anatomy that tractograms offer. 

 
 
Terminology 

 
As clinical tractography is still in its infancy, published reports frequently employ inconsistent 
terminology in describing pathologically altered tracts. Such descriptive terms as “disruption,” 
“displacement,” “deviation,” “deformation,” “destruction,” “degeneration” (the “D” words), 
“infiltration,” “interruption,” and “splaying” are frequently used in the context of DTI-
tractography without precise definitions. For example, there are at least two dictionary 
definitions for “disrupt:” (1) “to break apart or interrupt the normal unity of,” or (2) “to throw 
into disorder." Thus, "disrupted" is an ambiguous term that can mean either "interrupted" (i.e. 
tract continuity has been broken) or "disorganized" (i.e. the tract has been infiltrated and is less 
ordered than normal but it is not broken). Adding to this ambiguity is the possibility of partial 
interruption, i.e., some of the fibers within a given tract may be broken while others remain 
intact. In the spirit of encouraging the use of consistent terminology amongst DTI-tractography 
investigators, the following definitions are suggested: 
 
Deviation: Any portion of tract course is altered by bulk mass effect while maintaining tract 
coherence, with “coherence” implying that multiple adjacent fiber trajectories follow parallel 
pathways or they diverge/converge in an ordered fashion. "Deviation" is preferred over 
"displacement" because it is more specific and informative. (For example, road repairs may 
"displace" traffic without providing an alternate route; "deviated" implies that the flow of traffic 
is rerouted around the repairs. 
 



Infiltration: Any portion of a tract shows significantly reduced anisotropy while retaining 
sufficiently ordered structure to allow its identification on directional color maps and to allow 
fiber tracking to proceed. Note that infiltration by tumor is not discriminated from infiltration by 
edema as this cannot yet be reliably done. 
 
Interruption: Any portion of a tract is visibly discontinuous on anisotropy-weighted directional 
color maps, and/or fiber tracking is discontinuous despite reasonable relaxation of termination 
criteria. ("Reasonable" termination criteria are those that impede the generation of recognizably 
spurious tracts but do not necessarily penalize fiber tracking for low anisotropy, provided 
excessively sharp turns are adequately avoided.) “Interruption” is preferred over the more 
ambiguous “disruption” and the more pathologically definitive “destruction.” Note also that a 
tract may be interrupted either partially or completely. 
 
Degeneration: A tract characterized by significantly reduced size and/or anisotropy at a 
substantial distance from a lesion affecting the same neural pathway (either cortical or 
subcortical), such that secondary Wallerian degeneration rather than infiltration can reasonably 
be presumed. (Example: a chronically atrophic-appearing pyramidal tract in the brainstem, distal 
to a non-infiltrating lesion of the corona radiata).   
  
Splaying: A tract separated by a lesion into distinct bundles deviated in different directions. 
 
Although these definitions are not perfect (e.g. a severely deviated or infiltrated tract might be 
mistaken for an interrupted one), they represent a reasonable approach given the limitations 
inherent to DTI and tractography. Note also that these definitions are not mutually exclusive; e.g. 
a tract may be both deviated and infiltrated, deviated and interrupted, etc.  
 
 
Clinical Applications 
 
The clinical role of DTI-tractography is currently being defined. Unlike standard diffusion-
weighted imaging (DWI), which quickly became indispensable based on its application to acute 
stroke, there is not yet a “killer app” for tractography (killer app: computer-science jargon for the 
particular application of a technology that, by itself, makes the technology popular and 
successful). Broadly categorized, DTI-tractography applications include: tissue characterization 
(e.g., discriminating infiltrating tumor from edema in T2-hyperintense regions), lesion 
localization (e.g., determining the specific tract involved by a WM lesion) and per se tract 
mapping (e.g., preoperative mapping of a tract deviated by a tumor).  
 
Problems of tissue characterization have typically been addressed using scalar DTI parameters, 
most commonly ADC and FA, on a voxel-wise basis. A large number of studies have shown 
these parameters to be more sensitive to pathology than standard clinical MRI, based on changes 
found in the so-called “normal-appearing” WM. Unfortunately, this high sensitivity is 
accompanied by low specificity, particularly in the case of FA. Thus, while the common DTI 
parameters might have appeal as imaging endpoints in clinical trials (based on their sensitivity to 
subclinical pathological changes), their day-to-day clinical utility is currently quite limited. 
Recent efforts to derive greater pathological specificity from DTI parameters have focused on 



directionally specific (e.g., longitudinal, transverse) diffusivities and other features of the 
diffusion tensor but the clinical role of these emerging techniques is not yet defined. 
 
Lesion localization is a more straightforward application of DTI-tractography than tissue 
characterization, a few anatomical controversies notwithstanding [13,14]. The ability to localize 
lesions to specific tracts on imaging has obvious importance to the clinician attempting to 
correlate a patient’s disease with his clinical presentation and findings on neurological 
examination. For example, the correlation between conventional imaging findings and clinical 
disability in MS is notoriously poor; this is due, at least in part, to the lack of functional 
specificity in standard imaging-based estimates of disease burden (e.g., the total number or 
volume of lesions on T1-/T2-weighted images). DTI-tractography enables more functionally 
specific estimates of disease burden (“importance sampling” [15]) which better correlate with 
clinical disability. This approach may be similarly applied in the setting of focal infarcts [16,17].   
 
Although DTI-based, 3D fiber tracking can yield such quantitative measures as “connectivity” 
(the strength and/or likelihood of any functional connection between multiple cortical/subcortical 
areas) [18] or “fiber density” (the number of fiber trajectories identified per voxel in a region of 
interest) [19], in the clinical setting the technique is used primarily as a visualization tool. For 
example, DTI-tractography is uniquely suited to depict the aberrant fiber connections of various 
congenital/developmental anomalies [20,21] or the deviation of a fiber tract by a space-
occupying mass [12,22,23]. Some investigators have integrated DTI-based tractography with 
cortical mapping using fMRI [24-27] or intraoperative electrocortical stimulation [28,29], in 
some cases using the results of cortical mapping to provide seed locations to the tractography 
algorithm. Preoperative tractography can provide confirmation that a tumor-deviated tract 
remains intact and potentially facilitate preservation of the tract during resection. This 
application is probably the best known to date although studies proving clinical utility are still 
relatively few. In one of the largest published series to date, twice as many functional systems 
were localized to within 5mm of tumor borders when DTI and fMRI were used in preoperative 
planning compared to fMRI alone, and regional complication rates were quite low compared to 
those without functional mapping [30].   
 
Limitations and Pitfalls 
 
There are several limitations of tractography that should be considered. Estimates of the 
eigenvector directions, and hence the local tract directions, are sensitive to image noise and 
assorted artifacts (ghosting, misregistration, motion) that can reduce the accuracy of the DTI data 
and ultimately the tracts derived from these data. Crossing pathways are particularly problematic 
as most algorithms (particularly those based upon the major eigenvector) are unable to resolve 
them.  For example, the many intersecting pathways in the centrum semiovale, including corpus 
callosum, superior longitudinal fasciculus and corona radiata, create problems for the mapping of 
trajectories through this region. As a result, most reconstructions of the corpus callosum and 
corticospinal tract show connections only to medial cortical areas, whereas lateral connections 
are known to exist.  New diffusion imaging methods, such as HARDI (High Angular Diffusion 
Imaging) [31,32], QBI (Q-Ball Imaging) [33], CHARMED (Composite Hindered and Restricted 
Model of Diffusion) [34], and DSI (Diffusion Spectrum Imaging) [33,35], promise more 
accurate depictions of intersecting tracts; investigators have just begun to perform tractography 



using diffusion image data obtained with these advanced methods, with promising results [36]. 
Note, however, that these methods require much higher diffusion-weighting (typically 3,000-
15,000 s/mm2) and take much more time to acquire.     
 
Other technical problems remain to be solved before tractography can be considered a reliable 
technique in the setting of clinical pathology. Consider, for example, one of the best known and 
most promising clinical applications of DTI-tractography—the preoperative assessment of brain 
tumors. A fiber tract that is deviated by a non-infiltrating tumor with no associated edema 
presents the most straightforward case for DTI-based tract mapping; high anisotropy is generally 
preserved in such a tract, allowing it to be readily identified on directional color maps and traced 
around the tumor with fiber tracking techniques. Such examples are becoming commonplace in 
the literature and at scientific meetings but intraoperative correlations and outcomes analyses are 
not so common and the published experience of some investigators raises some serious concerns. 
For instance, intraoperative tract mapping by evoked potentials analysis has revealed errors in 
preoperative, DTI-based assessments of tract size and proximity to tumors [37]. There are 
several potential sources of such error, including misregistration of multi-modality images and 
shifting of the brain during craniotomy and tumor resection [38]. 
 
Cases involving infiltrative tumors with associated edema can be even more problematic. Either 
edema or tumor infiltration may reduce the anisotropy of involved tracts without destroying 
them, posing a problem for tractography algorithms designed to terminate when the anisotropy 
falls below a designated threshold. It is difficult to know, in this setting, how to interpret an 
apparent loss of fiber trajectories. Relaxing the termination criteria may allow an algorithm to 
proceed through low-anisotropy regions but this increases the risk of generating spurious tracts 
because estimates of major eigenvector direction become less reliable for low-anisotropy tensors 
[39]. Moreover, tumor infiltration may cause tensor directional alterations that are more complex 
and less predictable than the bulk mass displacements of non-infiltrating tumors [40,41]. Finally, 
several materials commonly encountered in this clinical population, including hemorrhage, 
calcification, surgical hardware, and postoperative pneumocephalus, may cause susceptibility 
artifacts that are especially problematic for echoplanar imaging (EPI), the acquisition method 
used most commonly for DTI. Such cases would likely benefit from non-EPI acquisition 
schemes, such as diffusion-weighted fast spin-echo [42]. 
 
 
Conclusion 
 
Further validation of DTI-tractography as a clinically relevant technique is still needed. Studies 
will have to become more quantitative, include greater numbers of patients, and employ 
statistical validation. For applications in tissue characterization, correlations with voxel-specific 
histological data will be critically important (but difficult to obtain). For applications in 
preoperative planning, correlations with intraoperative findings and postoperative outcomes will 
be necessary. Further study along these lines is surely forthcoming and more widespread clinical 
application of DTI-tractography is likely to follow. 
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