Skip to content

AFNI/NIfTI Server

Sections
Personal tools
You are here: Home » AFNI » Documentation

Doxygen Source Code Documentation


Main Page   Alphabetical List   Data Structures   File List   Data Fields   Globals   Search  

jidctflt.c File Reference

#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"

Go to the source code of this file.


Defines

#define JPEG_INTERNALS
#define DEQUANTIZE(coef, quantval)   (((FAST_FLOAT) (coef)) * (quantval))

Functions

 jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)

Define Documentation

#define DEQUANTIZE coef,
quantval       (((FAST_FLOAT) (coef)) * (quantval))
 

Definition at line 60 of file jidctflt.c.

Referenced by jpeg_idct_1x1(), jpeg_idct_2x2(), jpeg_idct_4x4(), jpeg_idct_float(), jpeg_idct_ifast(), and jpeg_idct_islow().

#define JPEG_INTERNALS
 

Definition at line 39 of file jidctflt.c.


Function Documentation

jpeg_idct_float j_decompress_ptr    cinfo,
jpeg_component_info   compptr,
JCOEFPTR    coef_block,
JSAMPARRAY    output_buf,
JDIMENSION    output_col
 

Definition at line 68 of file jidctflt.c.

References coef_block, compptr, jpeg_component_info::dct_table, DEQUANTIZE, DESCALE, FLOAT_MULT_TYPE, IDCT_range_limit, INT32, JCOEFPTR, JDIMENSION, JSAMPARRAY, JSAMPLE, JSAMPROW, output_col, and RANGE_MASK.

Referenced by start_pass().

00071 {
00072   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
00073   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
00074   FAST_FLOAT z5, z10, z11, z12, z13;
00075   JCOEFPTR inptr;
00076   FLOAT_MULT_TYPE * quantptr;
00077   FAST_FLOAT * wsptr;
00078   JSAMPROW outptr;
00079   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
00080   int ctr;
00081   FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
00082   SHIFT_TEMPS
00083 
00084   /* Pass 1: process columns from input, store into work array. */
00085 
00086   inptr = coef_block;
00087   quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
00088   wsptr = workspace;
00089   for (ctr = DCTSIZE; ctr > 0; ctr--) {
00090     /* Due to quantization, we will usually find that many of the input
00091      * coefficients are zero, especially the AC terms.  We can exploit this
00092      * by short-circuiting the IDCT calculation for any column in which all
00093      * the AC terms are zero.  In that case each output is equal to the
00094      * DC coefficient (with scale factor as needed).
00095      * With typical images and quantization tables, half or more of the
00096      * column DCT calculations can be simplified this way.
00097      */
00098     
00099     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
00100         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
00101         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
00102         inptr[DCTSIZE*7] == 0) {
00103       /* AC terms all zero */
00104       FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
00105       
00106       wsptr[DCTSIZE*0] = dcval;
00107       wsptr[DCTSIZE*1] = dcval;
00108       wsptr[DCTSIZE*2] = dcval;
00109       wsptr[DCTSIZE*3] = dcval;
00110       wsptr[DCTSIZE*4] = dcval;
00111       wsptr[DCTSIZE*5] = dcval;
00112       wsptr[DCTSIZE*6] = dcval;
00113       wsptr[DCTSIZE*7] = dcval;
00114       
00115       inptr++;                  /* advance pointers to next column */
00116       quantptr++;
00117       wsptr++;
00118       continue;
00119     }
00120     
00121     /* Even part */
00122 
00123     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
00124     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
00125     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
00126     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
00127 
00128     tmp10 = tmp0 + tmp2;        /* phase 3 */
00129     tmp11 = tmp0 - tmp2;
00130 
00131     tmp13 = tmp1 + tmp3;        /* phases 5-3 */
00132     tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
00133 
00134     tmp0 = tmp10 + tmp13;       /* phase 2 */
00135     tmp3 = tmp10 - tmp13;
00136     tmp1 = tmp11 + tmp12;
00137     tmp2 = tmp11 - tmp12;
00138     
00139     /* Odd part */
00140 
00141     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
00142     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
00143     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
00144     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
00145 
00146     z13 = tmp6 + tmp5;          /* phase 6 */
00147     z10 = tmp6 - tmp5;
00148     z11 = tmp4 + tmp7;
00149     z12 = tmp4 - tmp7;
00150 
00151     tmp7 = z11 + z13;           /* phase 5 */
00152     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
00153 
00154     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
00155     tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
00156     tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
00157 
00158     tmp6 = tmp12 - tmp7;        /* phase 2 */
00159     tmp5 = tmp11 - tmp6;
00160     tmp4 = tmp10 + tmp5;
00161 
00162     wsptr[DCTSIZE*0] = tmp0 + tmp7;
00163     wsptr[DCTSIZE*7] = tmp0 - tmp7;
00164     wsptr[DCTSIZE*1] = tmp1 + tmp6;
00165     wsptr[DCTSIZE*6] = tmp1 - tmp6;
00166     wsptr[DCTSIZE*2] = tmp2 + tmp5;
00167     wsptr[DCTSIZE*5] = tmp2 - tmp5;
00168     wsptr[DCTSIZE*4] = tmp3 + tmp4;
00169     wsptr[DCTSIZE*3] = tmp3 - tmp4;
00170 
00171     inptr++;                    /* advance pointers to next column */
00172     quantptr++;
00173     wsptr++;
00174   }
00175   
00176   /* Pass 2: process rows from work array, store into output array. */
00177   /* Note that we must descale the results by a factor of 8 == 2**3. */
00178 
00179   wsptr = workspace;
00180   for (ctr = 0; ctr < DCTSIZE; ctr++) {
00181     outptr = output_buf[ctr] + output_col;
00182     /* Rows of zeroes can be exploited in the same way as we did with columns.
00183      * However, the column calculation has created many nonzero AC terms, so
00184      * the simplification applies less often (typically 5% to 10% of the time).
00185      * And testing floats for zero is relatively expensive, so we don't bother.
00186      */
00187     
00188     /* Even part */
00189 
00190     tmp10 = wsptr[0] + wsptr[4];
00191     tmp11 = wsptr[0] - wsptr[4];
00192 
00193     tmp13 = wsptr[2] + wsptr[6];
00194     tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
00195 
00196     tmp0 = tmp10 + tmp13;
00197     tmp3 = tmp10 - tmp13;
00198     tmp1 = tmp11 + tmp12;
00199     tmp2 = tmp11 - tmp12;
00200 
00201     /* Odd part */
00202 
00203     z13 = wsptr[5] + wsptr[3];
00204     z10 = wsptr[5] - wsptr[3];
00205     z11 = wsptr[1] + wsptr[7];
00206     z12 = wsptr[1] - wsptr[7];
00207 
00208     tmp7 = z11 + z13;
00209     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
00210 
00211     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
00212     tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
00213     tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
00214 
00215     tmp6 = tmp12 - tmp7;
00216     tmp5 = tmp11 - tmp6;
00217     tmp4 = tmp10 + tmp5;
00218 
00219     /* Final output stage: scale down by a factor of 8 and range-limit */
00220 
00221     outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
00222                             & RANGE_MASK];
00223     outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
00224                             & RANGE_MASK];
00225     outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
00226                             & RANGE_MASK];
00227     outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
00228                             & RANGE_MASK];
00229     outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
00230                             & RANGE_MASK];
00231     outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
00232                             & RANGE_MASK];
00233     outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
00234                             & RANGE_MASK];
00235     outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
00236                             & RANGE_MASK];
00237     
00238     wsptr += DCTSIZE;           /* advance pointer to next row */
00239   }
00240 }
 

Powered by Plone

This site conforms to the following standards: